
1

Resource Overbooking and Application
Profiling in a Shared Internet Hosting
Platform

BHUVAN URGAONKAR

The Penn State University

PRASHANT SHENOY

University of Massachusetts

and

TIMOTHY ROSCOE

ETH Zürich

In this article, we present techniques for provisioning CPU and network resources in shared In-

ternet hosting platforms running potentially antagonistic third-party applications. The primary

contribution of our work is to demonstrate the feasibility and benefits of overbooking resources in

shared Internet platforms. Since an accurate estimate of an application’s resource needs is nec-

essary when overbooking resources, we present techniques to profile applications on dedicated

nodes, possibly while in service, and use these profiles to guide the placement of application compo-

nents onto shared nodes. We then propose techniques to overbook cluster resources in a controlled

fashion. We outline an empirical appraoch to determine the degree of overbooking that allows a

platform to achieve improvements in revenue while providing performance guarantees to Internet

applications. We show how our techniques can be combined with commonly used QoS resource al-

location mechanisms to provide application isolation and performance guarantees at run-time. We

implement our techniques in a Linux cluster and evaluate them using common server applications.

We find that the efficiency (and consequently revenue) benefits from controlled overbooking of re-

sources can be dramatic. Specifically, we find that overbooking resources by as little as 1% we can

increase the utilization of the cluster by a factor of two, and a 5% overbooking yields a 300–500%

improvement, while still providing useful resource guarantees to applications.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—

Distributed systems; D.4.8 [Operating Systems]: Performance—Measurements, modeling and

A portion of this research appeared in Proceedings of the 5th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’02), USENIX, Berkeley, CA, 2002, 239–254.

Authors’ addresses: B. Urgaonkar, Penn State University, Department of Computer Science

and Engineering, University Park, PA 16802; email: bhuvan@cse.psu.edu; P. Shenoy, Uni-

versity of Massachusetts, Department of Computer Science, Amherst, MA 01003; email:

shenoy@cs.umass.edu; T. Roscoe, ETH Zürich, Department of Computer Science, IFW B 45.2,

Haldeneggsteig 4, 8092 Zürich, Switzerland; email: troscoe@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1533-5399/2009/02-ART1 $5.00 DOI 10.1145/1462159.1462160 http://doi.acm.org/

10.1145/1462159.1462160

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:2 • B. Urgaonkar et al.

prediction, stochastic analysis; I.6.4 [Simulation and Modeling]: Model Validation and Analysis;

I.6.5 [Simulation and Modeling]: Model Development—Modeling methodologies

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Internet application, shared hosting platform, dedicated host-

ing platform, quality-of-service, yield management, resource overbooking, high percentile, profile,

capsule, placement

ACM Reference Format:
Urgaonkar, B., Shenoy, P., and Roscoe, T. 2009. Resource overbooking and application profiling in

a shared internet hosting platform. ACM Trans. Intern. Tech. 9, 1, Article 1 (February 2009), 45

pages. DOI = 10.1145/1462159.1462160 http://doi.acm.org/10.1145/1462159.1462160

1. INTRODUCTION AND MOTIVATION

Internet applications of various kinds burst onto the scene in the early to mid
1990s and revolutionized the way we conduct business and education, access
news and other information, and seek various forms of entertainment. The ex-
plosive growth of the Web, advances in software technologies such as proxy
caches, continuous growth in the capacities of servers as well as personal com-
puters, and ever-increasing network availability have helped transform In-
ternet applications into indispensable utilities in our personal, commercial,
and educational lives. Consequently, Internet hosting platforms—large clus-
ters of compute and storage servers often built using commodity hardware and
software—have emerged as an important business. These hosting platforms
have become an increasingly attractive alternative to traditional large multi-
processor servers for housing these applications, in part due to rapid advances
in computing technologies and falling hardware prices.

This article addresses challenges in the design of a particular type of Internet
hosting platform we call a shared hosting platform. This can be contrasted with
a dedicated hosting platform, where either the entire cluster runs a single ap-
plication (such as a Web search engine), or each individual processing element
in the cluster is dedicated to a single application (as in the “managed hosting”
services provided by some data centers). In contrast, shared hosting platforms
run a large number of different third-part Internet applications (Web servers,
streaming media servers, multi-player game servers, e-commerce applications,
etc.), and the number of applications typically exceeds the number of nodes in
the cluster. More specifically, each application runs on a subset of the nodes and
these subsets can overlap with one another. Whereas dedicated hosting plat-
forms are used for many niche applications that warrant their additional cost,
the economic reasons of space, power, cooling, and cost make shared hosting
platforms an attractive choice for many application hosting environments.

Shared hosting platforms imply a business relationship between the plat-
form provider and the application providers: the latter pay the former for
resources on the platform. In return, the platform provider gives some kind
of guarantee of resource availability to applications [Roscoe and Lyles 2000].

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:3

Perhaps the central challenge in building such a shared hosting platform
is resource management: the ability to reserve resources for individual
applications, the ability to isolate applications from other misbehaving or over-
loaded applications, and the ability to provide performance guarantees to ap-
plications. Arguably, the widespread deployment of shared hosting platforms
has been hampered by the lack of effective resource management mechanisms
that meet these requirements. Consequently, most hosting platforms in use to-
day adopt one of two approaches. The first avoids resource sharing altogether
by employing a dedicated model. This delivers useful resources to applica-
tion providers, but is expensive in machine resources. The second approach
is to share resources in a best-effort manner among applications, which con-
sequently receive no resource guarantees. While this is cheap in resources,
the value delivered to application providers is limited. Consequently, both ap-
proaches imply an economic disincentive to deploy viable hosting platforms.

Some recent research efforts have proposed resource management mecha-
nisms for shared hosting platforms [Aron et al. 2000; Chase and Doyle 2001;
Appleby et al. 2001; Urgaonkar and Shenoy 2004b; Chen et al. 2005, 2006].
While these efforts take an initial step towards the design of effective shared
hosting platforms, many challenges remain to be addressed. In particular, the
focus of these bodies of research is on devising algorithms for dynamic resource
provisioning and server consolidation in shared hosting platforms. The goal of
dynamic resource provisioning is to vary resource allocations for the hosted
applications to match their varying workloads. The goal of server consolidation
is to minimize the server resources used to house the applications to reduce
costs related to electricity, maintenance, etc. Despite this research, resource
utilization in most hosting platforms continues to be abysmally low, resulting
in wasted operational costs. An important reason for this wastage is the lack of
research on revenue maximization techniques such as yield management that
are well-studied in several other domains such as the airline industry [Davis
1994; Smith et al. 1992]. To enable these techniques as well as to achieve ef-
fective dynamic provisioning and server consolidation, it is crucial to devise
mechanisms to accurately identify the resource requirements of the applica-
tions. Such mechanisms for inferring the resource requirements of applications
have received little attention in the existing research on hosting platforms. In
the absence of such mechanisms, a shared platform often has to resort to either
over-provisioning resources (i.e., allocating more resources than needed by the
applications) or provisioning to meet the worst-case resource needs. Such pro-
visioning can result in significant wastage of resources [Chandra et al. 2003b].
As a result, the hosting platform may end up hosting fewer applications than
it could, or allocating more server resources to host a set of applications than
needed—this would result in an increase in the operational costs associated
with electricity, cooling, and maintenance. Accurately characterizing the re-
source needs of the applications can allow a shared hosting platform to care-
fully multiplex its resources among the hosted applications and significantly
improve its resource utilization, thereby improving its revenue. This is the con-
text of the present work.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:4 • B. Urgaonkar et al.

1.1 Research Contributions

The contribution of this article is threefold. First, we show how the resource
requirements of an application can be derived using online profiling and mod-
eling. Second, we demonstrate the efficiency benefits to the platform provider
of overbooking resources on the platform, a form of yield management, and
how this can be usefully done without adversely impacting the guarantees of-
fered to application providers. Third, we show how untrusted and/or mutually
antagonistic applications in the platform can be isolated from one another.

Automatic Derivation of QoS Requirements. Recent work on resource man-
agement mechanisms for clusters (e.g., Aron et al. [2000], Urgaonkar and
Shenoy [2004b], Chase and Doyle [2001], Xu et al. [2004], and Appleby et al.
[2001]) implicitly assumes that the resource requirements of an application are
either known in advance or can be derived, but does not satisfactorily address
the problem of how to determine these requirements. Several researchers have
developed analytical models for deriving the resource requirements of hosted
applications [Pradhan et al. 2002; Benani and Menasce 2005; Urgaonkar et al.
2005a; Cohen et al. 2004; Doyle et al. 2003]. These approaches, however, have
proven to be of limited use in the context of shared hosting. Analytical mod-
els have been found to become unwieldy when they attempt to capture mul-
tiple resources within a server machine. Moreover, these models, often rooted
in queuing theory, only capture steady-state resource requirements and lim-
ited workload regions (e.g., single bottleneck resource). The effectiveness of
a resource management technique for a shared hosting platform is crucially
dependent on the ability to reserve appropriate amount of resources for each
hosted application—overestimating an application’s resource needs can result
in idling of resources, while underestimating them can degrade application
performance.

A shared hosting platform can significantly enhance its utility to users by
automatically deriving the quality-of-service (QoS) requirements of an appli-
cation. Automatic derivation of QoS requirements involves (i) monitoring an
application’s resource usage, and (ii) using these statistics to derive QoS re-
quirements that conform to the observed behavior.

In this article, we employ kernel-based profiling mechanisms to empirically
monitor an application’s resource usage and propose techniques to derive QoS
requirements from this observed behavior. We then use these techniques to ex-
perimentally profile several server applications such as Web, streaming, game,
and database servers. Our results show that the bursty resource usage of server
applications makes it feasible to extract statistical multiplexing gains by over-
booking resources on the hosting platform.

Revenue Maximization through Overbooking. The goal of the owner of a
hosting platform is to maximize revenue, which implies that the cluster should
strive to maximize the number of applications that can be housed on a given
hardware configuration. We believe that a hosting platform can benefit from
existing research in the area of Yield Management (YM) [Davis 1994] in this
regard. YM is the process of understanding, anticipating, and reacting to

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:5

consumer behavior in order to maximize revenue. American Airlines, which
was a pioneer in the innovation of YM systems, estimated that the utiliza-
tion of YM increased its revenue by $1.4 billion between 1989 and 1991 [Smith
et al. 1992]. The use of modern telephone and networking infrastructure allows
airlines to monitor how seats are being reserved and use this information to
overbook flights (i.e., sell more tickets than there are seats) or offer discounts
when it appears as if seats will otherwise be vacant. Overbooking seats in an
airplane improves profit because past observations of passenger behavior have
demonstrated that the likelihood of all passengers arriving for a flight are very
low—some passengers do not turn up for their scheduled flights due to delays
or last-minute changes of plan. Therefore, by selling a few more tickets than the
number of seats, an airline can improve the chances of its flights being full. The
number of extra tickets is chosen so as to ensure that a passenger not getting
his promised flight is a rare event.

A shared hosting platform can also benefit from such overbooking of re-
sources. Overbooking resources in a shared hosting platform would be achieved
by provisioning each application lower than its peak (worst-case) resource re-
quirements. Whereas a passenger’s requirement for a seat can be captured by
a binary random variable (0 if the passenger does not turn up for his scheduled
flight and 1 otherwise), an application’s requirement for a temporal resource
(like CPU or network bandwidth) over a period of time needs to be represented
by a continuous random variable (ranging from 0 to the maximum available ca-
pacity for the purposes of this article).1 Overbooking of a resource would yield
improved utilization but would result in violations of the resource needs of one
or more applications whenever the aggregate requirement of the applications
hosted on the same machine exceeds the capacity of the machine. Excessive
overbooking could cause a significant degradation in the performance of the
application’s clients. The resulting customer dissatisfaction could result in a
loss of revenue for the application provider. The degree of overbooking should,
therefore, be chosen such that such degradation occurs rarely. This is analogous
to the rarity of the event that all the passengers on a flight turn up (causing
some of them to be denied seats on the flight) when the degree of overbooking
is properly chosen.

A well-designed hosting platform should be able to provide performance guar-
antees to applications even when overbooked, with the proviso that this guar-
antee is now probabilistic instead of deterministic (for instance, an application
might be provided a 99% guarantee (0.99 probability) that its resource needs
will be met). Since different applications have different tolerance to such over-
booking (e.g., the latency requirements of a game server make it less tolerant
to violations of performance guarantees than a Web server), an overbooking
mechanism should take into account diverse application needs.

The primary contribution of this article is to demonstrate the feasibility
and benefits of overbooking resources in shared hosting platforms. We propose

1Resources such as memory and disk bandwidth are known to behave differently and are beyond

the scope of this article [Berger et al. 2003; Shenoy and Vin 1998; Zhang et al. 2005a, 2005b]. We

conduct a discussion on how memory may be overbooked in a shared platform in Section 6.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:6 • B. Urgaonkar et al.

techniques to overbook resources in a controlled fashion based on application
resource needs. Although such overbooking can result in transient overloads
where the aggregate resource demand temporarily exceeds capacity, our tech-
niques limit the chances of transient overload of resources to predictably rare
occasions, and provide useful performance guarantees to applications in the
presence of overbooking.

The techniques we describe are general enough to work with many com-
monly used OS resource allocation mechanisms. Experimental results demon-
strate that overbooking resources by amounts as small as 1% yields a factor
of two increase in the number of applications supported by a given platform
configuration, while a 5–10% overbooking yields a 300–500% increase in effec-
tive platform capacity. In general, we find that the more bursty the application
resource needs, the higher are the benefits of resource overbooking. We also
find that collocating CPU-bound and network-bound applications as well as
bursty and non-bursty applications yields additional multiplexing gains when
overbooking resources.

Placement and Isolation of Antagonistic Applications. In a shared hosting
platform, it is assumed that third-party applications may be antagonistic to
each other and/or the platform itself, either through malice or bugs. A hosting
platform should address these issues by isolating applications from one an-
other and preventing malicious, misbehaving, or overloaded applications from
affecting the performance of other applications.

A third contribution of our work is to demonstrate how untrusted third-party
applications can be isolated from one another in shared hosting platforms. This
isolation takes two forms. Local to a machine, each processing node in the plat-
form employs resource management techniques that “sandbox” applications
by restricting the resources consumed by an application to its reserved share.
Globally, the process of placement, whereby components of an application are
assigned to individual processing nodes, can be constrained by externally im-
posed policies—for instance, by risk assessments made by the provider about
each application, which may prevent an application from being collocated with
certain other applications. Since a manual placement of applications onto nodes
is infeasibly complex in large clusters, the design of automated placement tech-
niques that allow a platform provider to exert sufficient control over the place-
ment process is a key issue.

1.2 System Model and Terminology

The shared hosting platform assumed in our research consists of a cluster of
N nodes, each of which consists of processor, memory, and storage resources
as well as one or more network interfaces. Platform nodes are allowed to be
heterogeneous with different amounts of these resources on each node. The
nodes in the hosting platform are assumed to be interconnected by a high-
speed LAN such as gigabit Ethernet. Each cluster node is assumed to run
an operating system kernel that supports some notion of quality of service
such as reservations or shares. Such mechanisms have been extensively studied
over the past decade and many deployed commercial and open-source operating

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:7

systems such as Solaris [Sun98b 1998], IRIX [Sgi99 1999], Linux [Sundaram
et al. 2000], and FreeBSD [Blanquer et al. 1999; Banga et al. 1999] already
support such features.

In this article, we primarily focus on managing two resources—CPU and
network interface bandwidth—in shared hosting platforms. The challenges of
managing other resources in hosting environments, such as memory, disk band-
width, and storage space, are beyond the scope of this article. Nevertheless,
we believe the techniques developed here are also applicable to these other
resources.

We use the term, application, for a complete service running on behalf of
an application provider; since an application will frequently consist of multiple
distributed components, we use the term capsule to refer to that component of
an application running on a single node. Each application has at least one cap-
sule, possibly more if the application is distributed. Capsules provide a useful
abstraction for logically partitioning an application into subcomponents and for
exerting control over the distribution of these components onto different nodes.
To illustrate, consider an e-commerce application consisting of a Web server,
a Java application server and a database server. If all three components need
to be collocated on a single node, then the application will consist of a single
capsule with all three components. On the other hand, if each component needs
to be placed on a different node, then the application should be partitioned
into three capsules. Depending on the number of its capsules, each application
runs on a subset of the platform nodes and these subsets can overlap with one
another, resulting in resource sharing.

The rest of this article is structured as follows. Section 2 discusses techniques
for empirically deriving an application’s resource needs, while Section 3 dis-
cusses our resource overbooking techniques and capsule placement strategies.
We discuss implementation issues in Section 4 and present our experimental
results in Section 5. In Section 6, we discuss related work. Finally, Section 7
presents concluding remarks.

2. AUTOMATIC DERIVATION OF APPLICATION QOS REQUIREMENTS

The first step in hosting a new application is to derive its resource requirements.
While the problem of QoS-aware resource management has been studied exten-
sively in the literature [Banga et al. 1999; Blanquer et al. 1999; Chandra et al.
2000; Duda and Cheriton 1999; Goyal et al. 1996a, 1996b; Jones et al. 1997;
Lin et al. 1998; Leslie et al. 1996; Berger et al. 2003], the problem of how much
resource to allocate to each application has received relatively little attention.
We assume that an application provider wishes to provide some kind of guar-
antee on the QoS it will offer its clients. For example, a Web server may wish
to ensure that the response time experienced by its clients is below 1 second on
average for requests of a certain type. Similarly, a streaming media server may
wish to ensure that the streaming rate it provides to its clients is high enough
so that they do not experience more than one playback discontinuity during
a two-hour-long movie. In order to provide such guarantees, the application
provider needs to determine the amount of resources that the hosting platform

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:8 • B. Urgaonkar et al.

should provision for it, so its QoS requirements may be met. The problem of
translating the QoS requirements of an application to its resource requirements
is referred to as application modeling. Existing research on application mod-
eling has used analytical techniques based on queuing-theory [Menasce et al.
2004; Benani and Menasce 2005; Urgaonkar et al. 2005a; Doyle et al. 2003;
Kamra et al. 2004] or machine learning [Cohen et al. 2004] as well as less for-
mal measurement-based techniques [Pradhan et al. 2002]. To the best of our
knowledge, these models only allow the determination of the average and the
worst-case resource requirements of an application. They neither provide a de-
tailed description of the resource usage distribution of an application nor any
information on the impact of resource overbooking on application performance.
Therefore, while being suitable for use in existing techniques for provisioning
based on worst-case needs, they do not provide sufficient information to enable
controlled overbooking of resources. Furthermore, all of these models have to
be necessarily developed by the application provider, since developing them re-
quires an intimate knowledge of the software architecture of the application.
Consequently, the resource requirements inferred using such models leaves lit-
tle room for a shared hosting platform to make efficient decisions regarding
placing the applications in a manner that will allow it to reduce its costs and
improve its revenue.

In this section, we present an alternative approach for application model-
ing. We propose a measurement-based technique to automatically derive the
resource requirements of an application. As opposed to existing models, our
modeling technique can be used by a hosting platform to infer the resource
requirements of an application without explicit knowledge of the application’s
software architecture. The hosting platform can essentially treat an application
as a “black-box”. At the same time, it relieves the application provider of the
task of modeling its application to provide the hosting platform with its resource
requirements. Our approach is similar in spirit to black-box [Kelly et al. 2004]
and gray-box [Arpaci-Dusseau and Arpaci-Dusseau 2001; Burnett et al. 2002]
modeling techniques that have been used in other systems domains. In the re-
mainder of the article, we will use the terms resource requirements and QoS
requirements interchangeably. Deriving the QoS requirements is a two-step
process: (i) we first use profiling techniques to monitor application behavior,
and (ii) we then use our empirical measurements to derive QoS requirements
that conform to the observed behavior.

2.1 Application QoS Requirements: Definitions

The QoS requirements of an application are defined on a per-capsule basis. For
each capsule, the QoS requirements specify the intrinsic rate of resource usage,
the variability in the resource usage, the time period over which the capsule
desires resource guarantees, and the level of overbooking that the application
(capsule) is willing to tolerate. As explained earlier, in this article, we are con-
cerned with two key resources, namely CPU and network interface bandwidth.
For each of these resources, we define the QoS requirements along the above
dimensions in an OS-independent manner. In Section 4.1, we show how to map

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:9

these requirements to various OS-specific resource management mechanisms
that have been developed.

More formally, we represent the QoS requirements of an application capsule
by a quintuple (σ, ρ , τ, U, O):

—Token Bucket Parameters (σ, ρ). We capture the basic resource requirements
of a capsule by modeling resource usage as a token bucket (σ, ρ) [Tang and Tai
1999]. The parameter σ denotes the intrinsic rate of resource consumption,
while ρ denotes the variability in the resource consumption. More specifically,
σ denotes the rate at which the capsule consumes CPU cycles or network
interface bandwidth, while ρ captures the maximum burst size. By definition,
a token bucket bounds the resource usage of the capsule to σ · t + ρ over any
interval t.

—Period τ . The third parameter τ denotes the time period over which the cap-
sule desires guarantees on resource availability. Put another way, the system
should strive to meet the QoS requirements of the capsule over each interval
of length τ . The smaller the value of τ , the more stringent are the desired
guarantees (since the capsule needs to be guaranteed resources over a finer
time scale). In particular, for the above token bucket parameters, the capsule
requires that it be allocated at least σ · τ + ρ resources every τ time units.

—Usage Distribution U. While the token bucket parameters succinctly capture
the capsule’s resource requirements, they are not sufficiently expressive by
themselves to denote the QoS requirements in the presence of overbooking.
Consequently, we use two additional parameters—U and O—to specify re-
source requirements in the presence of overbooking. The first parameter U
denotes the probability distribution of resource usage. Note that U is a more
detailed specification of resource usage than the token bucket parameters
(σ, ρ), and indicates the probability with which the capsule is likely to use a
certain fraction of the resource (i.e., U (x) is the probability that the capsule
uses a fraction x of the resource, 0 ≤ x ≤ 1). A probability distribution of
resource usage is necessary so that the hosting platform can provide (quan-
tifiable) probabilistic guarantees even in the presence of overbooking.

—Overbooking Tolerance O. The parameter O is the overbooking tolerance
of the capsule. It specifies the probability with which the capsule’s require-
ments may be violated due to resource overbooking (by providing it with
less resources than the required amount). Thus, the overbooking tolerance
indicates the minimum level of service that is acceptable to the capsule. To
illustrate, if O = 0.01, the capsule’s resource requirements should be met
99% of the time (or with a probability of 0.99 in each interval τ).

In our prior work [Urgaonkar et al. 2002], we had assumed that the pa-
rameters τ and O are specified by the application provider. This was assumed
to be based on a contract between the platform provider and the application
provider (e.g., the more the application provider is willing to pay for resources,
the stronger are the provided guarantees), or on the particular characteristics
of the application (e.g., a streaming media server requires more stringent guar-
antees and is less tolerant to violations of these guarantees than a Web server).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:10 • B. Urgaonkar et al.

In this article, we also develop an empirical approach that a hosting platform
can use to determine the parameters τ and O that would help an application
meet its QoS goals. We describe these mechanisms next.

2.2 Kernel-Based Profiling of Resource Usage

Our techniques for empirically deriving the QoS requirements of an applica-
tion rely on profiling mechanisms that monitor application behavior. Recently,
a number of application profiling mechanisms ranging from OS-kernel-based
profiling [Anderson et al. 1997] to run-time profiling using specially linked li-
braries [Shende et al. 1998] have been proposed.

We use kernel-based profiling mechanisms in the context of shared hosting
platforms, for a number of reasons. First, being kernel-based, these mecha-
nisms work with any application and require no changes to the application at
the source or binary levels. This is especially important in hosting environ-
ments where the platform provider may have little or no access to third-party
applications. Second, accurate estimation of an application’s resource needs re-
quires detailed information about when and how much resources are used by
the application at a fine time-scale. Whereas detailed resource allocation in-
formation is difficult to obtain using application-level techniques, kernel-based
techniques can provide precise information about various kernel events such
as CPU scheduling instances and network packet transmissions times.

The profiling process involves running the application on a set of isolated
platform nodes (the number of nodes required for profiling depends on the num-
ber of capsules). By isolated, we mean that each node runs only the minimum
number of system services necessary for executing the application and no other
applications are run on these nodes during the profiling process—such isolation
is necessary to minimize interference from unrelated tasks when determining
the application’s resource usage. The application is then subjected to a realistic
workload, and the kernel profiling mechanism is used to track its resource us-
age. It is important to emphasize that the workload used during profiling should
be both realistic and representative of real-world workloads. While techniques
for generating such realistic workloads are orthogonal to our current research,
we note that a number of different workload-generation techniques exist, rang-
ing from trace replay of actual workloads to running the application in a “live”
setting, and from the use of synthetic workload generators to the use of well-
known benchmarks. Any such technique suffices for our purpose as long as
it realistically emulates real-world conditions, although we note that, from a
business perspective, running the application “for real” on an isolated machine
to obtain a profile may be preferable to other workload generations techniques.

We use the Linux trace toolkit as our kernel profiling mechanism [LTT02].
The toolkit provides flexible, low-overhead mechanisms to trace a variety of
kernel events such as system call invocations, process, memory, file system, and
network operations. The user can specify the specific kernel events of interest
as well as the processes that are being profiled to selectively log events. For
our purposes, it is sufficient to monitor CPU and network activity of capsule
processes—we monitor CPU scheduling instances (the time instants at which

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:11

Fig. 1. An example of an On-Off trace.

capsule processes get scheduled and the corresponding quantum durations)
as well as network transmission times and packet sizes. Given such a trace of
CPU and network activity, we now discuss the derivation of the capsule’s QoS
requirements.

2.3 Empirical Derivation of the QoS Requirements

We use the trace of kernel events obtained from the profiling process to model
CPU and network activity as a simple On-Off process. This is achieved by ex-
amining the time at which each event occurs and its duration and deriving a
sequence of busy (On) and idle (Off) periods from this information (see Figure 1).
This trace of busy and idle periods can then be used to derive both the resource
usage distribution U as well as the token bucket parameters (σ, ρ).

2.3.1 Determining the Usage Distribution U. Recall that the usage distri-
bution U denotes the probability with which the capsule uses a certain fraction
of the resource. To derive U , we simply partition the trace into measurement
intervals of length I and measure the fraction of time for which the capsule
was busy in each such interval. This value, which represents the fractional
resource usage in that interval, is histogrammed and then each bucket is nor-
malized with respect to the number of measurement intervals I in the trace to
obtain the probability distribution U . Figure 2(a) illustrates this process.

2.3.2 Determining τ and O. We take an empirical approach for determin-
ing the parameters τ and O. Our reasons for choosing such an approach are
similar to those that we described earlier concerning the shortcomings of an-
alytical approaches in accurately capturing the distributions of resource re-
quirements needed for achieving controlled overbooking in a shared hosting
platform.

Qualitatively, higher values of τ and O allow the platform to achieve higher
utilization while resulting in more instances of QoS violations for the applica-
tion. The goal of the hosting platform is to determine the parameters τ and O
that would maximize its revenue. To capture this tradeoff quantitatively, the
platform needs to be able to compare the improvement in its revenue due to
higher utilization with the possible loss in its revenue due to QoS violations. We
assume that an application provider specifies a bound on an application-specific
QoS metric (such as an upper bound on the average response time or a lower
bound on the throughput) that it requires the hosting platform to guarantee. We
also assume that the application provider and the hosting platform agree upon

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:12 • B. Urgaonkar et al.

Fig. 2. Derivation of the usage distribution and token bucket parameters.

a penalty that the platform must pay whenever QoS violations occur despite
the application’s workload conforming to its expected intensity.

We conduct a simple search over reasonable values for τ and O to estimate
how the expected revenue for the platform would vary with τ and O. For each
chosen pair of τ and O, we provision the concerned resource (CPU or network
bandwidth) corresponding to the (100−O)th percentile of the distribution U de-
rived earlier—this represents the minimum amount of the resource that would
be available to the application if we were to overbook the resource by O%. We
then re-subject the application to the workload used during offline profiling and
measure the expected revenue (taking into account penalties due to QoS vio-
lations). Our search space is manageably small. First, we discretize the search
space and only consider integral values of τ (in seconds) and O (in multiples of
1%). Second, the time period over which Internet server applications desire re-
source guarantees is at most a few seconds. Therefore, we need to search over a
small set of values of τ . Finally, we use a binary search over the range [0%, 50%]
to determine the value of O which is expected to provide the peak revenue—a
smaller degree of overbooking would not fully exploit statistical multiplexing
gains whereas a larger degree of overbooking would cause enough QoS viola-
tions to offset the improvement in revenue due to higher utilization.

Deriving Token Bucket Parameters (σ, ρ). Recall that a token bucket limits the
resource usage of a capsule to σ · t + ρ over any interval t. A given On-Off trace
can have, in general, many (σ , ρ) pairs that satisfy this bound. To intuitively
understand why, let us compute the cumulative resource usage for the capsule
over time. The cumulative resource usage is simply the total resource consump-
tion thus far and is computed by incrementing the cumulative usage after each
ON period. Thus, the cumulative resource usage is a step function as depicted in
Figure 2(b). Our objective is to find a line σ ·t +ρ that bounds the cumulative re-
source usage; the slope of this line is the token bucket rate σ and its Y-intercept
is the burst size ρ. As shown in Figure 2(b), there are in general many such
curves, all of which are valid descriptions of the observed resource usage.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:13

Several algorithms that mechanically compute all valid (σ, ρ) pairs for a
given On-Off trace have been proposed recently. We use a variant of one such
algorithm [Tang and Tai 1999] in our research—for each On-Off trace, the algo-
rithm produces a range of σ values (i.e., [σmin, σmax]) that constitute valid token
bucket rates for observed behavior. For each σ within this range, the algorithm
also computes the corresponding burst size ρ. Although any pair within this
range conforms to the observed behavior, the choice of a particular (σ, ρ) has
important practical implications.

Since the overbooking tolerance O for the capsule is given, we can use O
to choose a particular (σ, ρ) pair. To illustrate, if O = 0.05, the capsule needs
must be met 95% of the time, which can be achieved by reserving resources
corresponding to the 95th percentile of the usage distribution. Consequently,
a good policy for shared hosting platforms is to pick a σ that corresponds to
the (1 − O) ∗ 100th percentile of the resource usage distribution U, and to pick
the corresponding ρ as computed by the above algorithm. This ensures that we
provision resources based on a high percentile of the capsule’s needs and that
this percentile is chosen based on the specified overbooking tolerance O.

2.4 Profiling Server Applications: Experimental Results

In this section, we profile several commonly-used server applications to illus-
trate the process of deriving an application’s QoS requirements. Our experimen-
tally derived profiles not only illustrate the inherent nature of various server
application but also demonstrate the utility and benefits of resource overbook-
ing in shared hosting platforms.

The test bed for our profiling experiments consists of a cluster of five Dell Pow-
eredge 1550 servers, each with a 966 MHz Pentium III processor and 512 MB
memory running Red Hat Linux 7.0. All servers runs the 2.2.17 version of the
Linux kernel patched with the Linux trace toolkit version 0.9.5, and are con-
nected by 100 Mb/s Ethernet links to a Dell PowerConnect (model no. 5012)
Ethernet switch.

To profile an application, we run it on one of our servers and use the remain-
ing servers to generate the workload for profiling. We assume that all machines
are lightly loaded and that all nonessential system services (e.g., mail services,
X windows server) are turned off to prevent interference during profiling. We
profile the following server applications in our experiments:

—Apache Web Server. We use the SPECWeb99 benchmark [SPECWeb99] to gen-
erate the workload for the Apache Web server (version 1.3.24). The SPECWeb
benchmark allows control along two dimensions—the number of concurrent
clients and the percentage of dynamic (cgi-bin) HTTP requests. We vary both
parameters to study their impact on Apache’s resource needs.

—MPEG Streaming Media Server. We use a home-grown streaming server to
stream MPEG-1 video files to multiple concurrent clients over UDP. Each
client in our experiment requests a 15-minute-long variable bit rate MPEG-
1 video with a mean bit rate of 1.5 Mb/s. We vary the number of concurrent
clients and study its impact on the resource usage at the server.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:14 • B. Urgaonkar et al.

Fig. 3. Profile of the Apache Web server using the default SPECWeb99 configuration.

—Quake Game Server. We use the publicly available Linux Quake server to un-
derstand the resource usage of a multi-player game server; our experiments
use the standard version of Quake I—a popular multi-player game on the
Internet. The client workload is generated using a bot—an autonomous soft-
ware program that emulates a human player. We use the publicly available
“terminator” bot to emulate each player; we vary the number of concurrent
players connected to the server and study its impact on the resource usage.

—PostgreSQL Database Server. We profile the postgreSQL database server (ver-
sion 7.2.1) using the pgbench 1.2 benchmark. This benchmark is part of the
postgreSQL distribution and emulates the TPC-B transactional benchmark
[pgbench 2002]. The benchmark provides control over the number of concur-
rent clients as well as the number of transactions performed by each client.
We vary both parameters and study their impact on the resource usage of
the database server.

We now present some results from our profiling study.
Figure 3(a) depicts the CPU usage distribution of the Apache Web server

obtained using the default settings of the SPECWeb99 benchmark (50 concur-
rent clients, 30% dynamic cgi-bin requests). Figure 3(b) plots the corresponding
cumulative distribution function (CDF) of the resource usage. As shown in the
figure (and summarized in Table I), the worst-case CPU usage (100th profile)
is 25% of CPU capacity. Furthermore, the 99th and the 95th percentiles of CPU
usage are 10 and 4% of capacity, respectively. These results indicate that CPU
usage is bursty in nature and that the worst-case requirements are significantly
higher than a high percentile of the usage. Consequently, under provisioning
(i.e., overbooking) by a mere 1% reduces the CPU requirements of Apache by a
factor of 2.5, while overbooking by 5% yields a factor of 6.25 reduction (implying
that 2.5 and 6.25 times as many Web servers can be supported when provision-
ing based on the 99th and 95th percentiles, respectively, instead of the 100th
profile). Thus, even small amounts of overbooking can potentially yield signif-
icant increases in platform capacity. Figure 4 depicts the possible valid (σ, ρ)
pairs for Apache’s CPU usage. Depending on the specified overbooking tolerance

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:15

Fig. 4. Token bucket parameters describing the CPU requirements of the Apache Web server using

the default SPECWeb99 configuration.

Table I. Summary of Profiles

Res. usage at percentile (σ, ρ)

Application Resource 100th 99th 95th for O = 0.01

WS, default CPU 0.25 0.10 0.04 (0.10, 0.218)

WS, 50% dynamic CPU 0.69 0.29 0.12 (0.29, 0.382)

SMS, k = 4 Net 0.19 0.16 0.11 (0.16, 1.89)

SMS, k = 20 Net 0.63 0.49 0.43 (0.49, 6.27)

GS, k = 2 CPU 0.011 0.010 0.009 (0.010, 0.00099)

GS, k = 4 CPU 0.018 0.016 0.014 (0.016, 0.00163)

DBS, k = 1 (def) CPU 0.33 0.27 0.20 (0.27, 0.184)

DBS, k = 10 CPU 0.85 0.81 0.79 (0.81, 0.130)

Although we profiled both CPU and network usage for each application, we only present results

for the more constraining resource. Abbreviations: WS = Apache, SMS = streaming media server,

GS = Quake game server, DBS = database server, k = num. clients.

O, we can set σ to an appropriate percentile of the usage distribution U , and
the corresponding ρ can then be chosen using this figure.

Figures 5(a)–(d) depict the CPU or network bandwidth distributions, as ap-
propriate, for various server applications. Specifically, the figure shows the us-
age distribution for the Apache Web server with 50% dynamic SPECWeb re-
quests, the streaming media server with 20 concurrent clients, the Quake game
server with 4 clients and the postgreSQL server with 10 clients. Table I sum-
marizes our results and also presents profiles for several additional scenarios
(only a small representative subset of the three dozen profiles obtained from
our experiments are presented here). Table I also lists the worst-case resource
needs as well as the 99th and the 95th percentile of the resource usage.

Together, Figure 5 and Table I demonstrate that all server applications ex-
hibit burstiness in their resource usage, albeit to different degrees. This bursti-
ness causes the worst-case resource needs to be significantly higher than a
high percentile of the usage distribution. Consequently, we find that the 99th
percentile is smaller by a factor of 1.1-2.5, while the 95th percentile yields a

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:16 • B. Urgaonkar et al.

Fig. 5. Profiles of Various Server Applications.

factor of 1.3-6.25 reduction when compared to the 100th percentile. Together,
these results illustrate the potential gains that can be realized by overbooking
resources in shared hosting platforms.

3. RESOURCE OVERBOOKING AND CAPSULE PLACEMENT
IN HOSTING PLATFORMS

Having derived the QoS requirements of each capsule, the next step is to deter-
mine which platform node will run each capsule. Several considerations arise
when making such placement decisions. First, since platform resources are be-
ing overbooked, the platform should ensure that the QoS requirements of a
capsule will be met even in the presence of overbooking. Second, since multi-
ple nodes may have the resources necessary to house each application capsule,

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:17

the platform will need to pick a specific mapping from the set of feasible map-
pings. This choice will be constrained by issues such as trust among competing
applications. In this section, we present techniques for overbooking platform
resources in a controlled manner. The aim is to ensure that: (i) the QoS require-
ments of the application are satisfied and (ii) overbooking tolerances as well
as external policy constraints are taken into account while making placement
decisions.

3.1 Resource Overbooking Techniques

A platform node can accept a new application capsule so long as the resource
requirements of existing capsules are not violated, and sufficient unused re-
sources exist to meet the requirements of the new capsule. However, if the node
resources are overbooked, another requirement is added: the overbooking toler-
ances of individual capsules already placed on the node should not be exceeded
as a result of accepting the new capsule. Verifying these conditions involves two
tests:

Test 1: Resource requirements of the new and existing capsules can be met.
To verify that a node can meet the requirements of all capsules, we simply
sum the requirements of individual capsules and ensure that the aggregate
requirements do not exceed node capacity. For each capsule i on the node, the
QoS parameters (σi,ρi) and τi require that the capsule be allocated (σi · τi + ρi)
resources in each interval of duration τi. Further, since the capsule has an
overbooking tolerance Oi, in the worst case, the node can allocate only (σi · τi +
ρi) ∗ (1 − Oi) resources and yet satisfy the capsule needs (thus, the overbooking
tolerance represents the fraction by which the allocation may be reduced if
the node saturates due to overbooking). Consequently, even in the worst case
scenario, the resource requirements of all capsules can be met so long as the
total resource requirements do not exceed the capacity:

k+1∑
i=1

(σi · τmin + ρi) · (1 − Oi) ≤ C · τmin, (1)

where C denotes the CPU or network interface capacity on the node, k denotes
the number of existing capsules on the node, k + 1 is the new capsule, and
τmin = min(τ1, τ2, . . . , τk+1) is the period τ for the capsule that desires the most
stringent guarantees.

Test 2: Overbooking tolerances of all capsules are met. The overbooking tol-
erance of a capsule is met only if the total amount of overbooking is smaller
than its specified tolerance. To compute the aggregate overbooking on a node,
we must first compute the total resource usage on the node. Since the usage
distributions Ui of individual capsules are known, the total resource on a node

is simply the sum of the individual usages. That is, Y = ∑k+1
i=1 Ui, where Y

denotes the of aggregate resource usage distribution on the node. Assuming
each Ui is independent, the resulting distribution Y can be computed from

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:18 • B. Urgaonkar et al.

elementary probability theory.2 Given the total resource usage distribution Y ,
the probability that the total demand exceeds the node capacity should be less
than the overbooking tolerance for every capsule, that is,

Pr(Y > C) ≤ Oi ∀i, (2)

where C denotes the CPU or network capacity on the node. Rather than ver-
ifying this condition for each individual capsule, it suffices to do so for the
least-tolerance capsule. That is,

Pr(Y > C) ≤ min(O1, O2, . . . , Ok+1), (3)

where Pr(Y > C) = ∑∞
x=C Y (x). Note that Eq. (3) enables a platform to provide

a probabilistic guarantee that a capsule’s QoS requirements will be met at least
(1 − Omin) × 100% of the time.

Equations (1) and (3) can easily handle heterogeneity in nodes by using
appropriate C values for the CPU and network capacities on each node. A new
capsule can be placed on a node if Eqs. (1) and (3) are satisfied for both the CPU
and network interface. Since multiple nodes may satisfy a capsule’s CPU and
network requirements, especially at low and moderate utilizations, we need to
devise policies to choose a node from the set of all feasible nodes for the capsule.
We discuss this issue next.

3.2 Capsule Placement Algorithms

Consider an application with m capsules that needs to be placed on a shared
hosting platform with N nodes. For each of the m capsules, we can determine
the set of feasible platform nodes. A feasible node is one that can satisfy the
capsule’s resource requirements (i.e., satisfies Eqs. (1) and (3) for both the CPU
and network requirements). The platform must then pick a feasible node for
each capsule such that all m capsules can be placed on the platform, with
the constraint that no two capsules can be placed on the same node (since, by
definition, two capsules from the same application are not collocated).

The placement of capsules onto nodes subject to the above constraint can
be handled as follows. We model the placement problem using a graph that
contains a vertex for each of the m capsules and N nodes. We add an edge
from a capsule to a node if that node is a feasible node for the capsule (i.e., has
sufficient resources to house the application). The result is a bipartite graph
where each edges connects a capsule to a node. Figure 6 illustrates such a
graph with three capsules and four nodes. As shown in the figure, determining
an appropriate placement is a non-trivial problem since the placement decision
for one capsule can impact the placement of other capsules. In the above figure,
for instance, placing either capsule 2 or 3 onto node 3 eliminates any possible
placement for capsule 1 (which has node 3 as its only feasible node). Multiple

2This is done using the z-transform. The z-transform of a random variable U is the polynomial

Z (U) = a0 + za1 + z2a2 + · · · where the coefficient of the ith term represents the probability that

the random variable equals i (i.e., U (i)). If U1, U2, . . . , Uk+1 are k+1 independent random variables,

and Y = ∑k+1
i=1 Ui , then Z (Y) = ∏k+1

i=1 Z (Ui). The distribution of Y can then be computed using a

polynomial multiplication of the z-transforms of U1, U2, . . . , Uk+1 [Papoulis and Pillai 2002].

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:19

Fig. 6. A bipartite graph indicating which capsules can be placed on which nodes.

such constraints may exist, all of which will need to be taken into account when
determining the final placement.

Given such a graph, we use the following algorithm to determine a placement.
This algorithm solves the maximum bipartite matching problem [Cormen et al.
1991] on this graph. If it finds a maximum matching of size m, then it places
the capsules on the nodes that they are associated with in the matching. If,
however, the maximum matching is smaller than m, then there is at least one
capsule that cannot be placed. In this case, the algorithm terminates declaring
that no placement exists for the application.

LEMMA 1. An application with m capsules can be placed on a hosting plat-
form if, and only if, there is a matching of size m in the bipartite graph G
modeling its placement on the platform.

PROOF.
(⇒) A matching of size m in G specifies a one-to-one correspondence between

capsules and nodes. Since edges connote feasibility, this correspondence is a
valid placement.

(⇐) If G admits no matching of size m, then any placement of capsules on
nodes must end up with distinct capsules sharing the same node. This means
that the application cannot be placed without violating the capsule placement
restriction.

The run-time of this algorithm is given by the time to solve the maximal
bipartite matching problem [Cormen et al. 1991], that is, O((n + M)3).

When there are multiple nodes that a capsule may be placed on, which node
should we select? As we will show in Section 5.2, the choice of a particular fea-
sible node can have important implications of the total number of applications
supported by the cluster. As a baseline, we use a policy that picks a node uni-
formly at random when multiple feasible nodes exist. We consider three other
policies, in addition to random, for making this decision. The first policy is best-
fit, where we choose the feasible node that has the least unused resources (i.e.,
constitutes the best fit for the capsule). The second policy is worst-fit, where we
place the capsule onto the feasible node with the most unused resources. In gen-
eral, the unused network and CPU capacities on a node may be different, and

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:20 • B. Urgaonkar et al.

similarly, the capsule may request different amounts of CPU and network re-
sources. Consequently, defining the best and worst fits for the capsule must take
into account the unused capacities on both resources—we currently do so by
simply considering the mean unused capacity across the two resources and com-
pare it to the mean requirements across the two resources to determine the “fit”.

A third policy is to place a capsule onto a node that has other capsules
with similar overbooking tolerances. Since a node must always meet the re-
quirements of its least tolerant capsule per Eq. (3), collocating capsules with
similar overbooking tolerances permits the platform provider to maximize the
amount of resource overbooking in the platform. For instance, placing a cap-
sule with a tolerance of 0.01 onto a node that has an existing capsule with
O = 0.05 reduces the maximum permissible overbooking on that node to 1%
(since Omin = min(0.01, 0.05) = 0.01). On the other hand, placing this less-
tolerant capsule on another node may allow future, more tolerant capsules to
be placed onto this node, thereby allowing nodes resources to be overbooked to
a greater extent. We experimentally compare the effectiveness of these three
policies in Section 5.2.

3.3 Policy Constraints on Capsule Placement

Whereas the strategies outlined in the previous section take QoS requirements
into account while making placement decisions, they do not consider exter-
nally imposed policies that might constrain placement. For example, a platform
provider might refuse to collocate capsules from applications owned by compet-
ing providers. Alternatively, the decision as to whether to collocate application
capsules might be a quantitative one, involving some model of risk assessment.

To capture these notions, we quantify the “trust” between a newly ar-
riving application and the existing k applications using a trust vector
<T1, T2, . . . , Tk>. Essentially, the vector specifies trust between applications in
a pair-wise fashion; the ith element of the vector, Ti, denotes the trust between
the new application and application i. Ti can vary between 0 and 1 depending
on the level of trust between the two applications—a value of 0 indicates no
trust whatsoever, a 1 indicates complete trust, and intermediate values indi-
cate varying degrees of trust. An application capsule should not be collocated
with a capsule with Ti = 0. In general, application capsules should be placed
on nodes containing capsules with larger trust values.

3.3.1 Dynamic Determination of Trust Values. In practice, a platform may
have little or no basis for determining the trust values between a newly arriving
application and the already placed applications. We envision dynamically vary-
ing trust values based on measurements of resource usage interference between
co-located applications. A shared platform should allow application providers
to choose that their application be hosted on dedicated server(s). Such applica-
tions would be guaranteed to be immune to any resource assignment violations
that overbooking may result in. Such dedicated hosting would, however, come
at the cost of higher price of hosting.

Multiple approaches are possible for associating trust values with applica-
tions willing to be co-located with other applications. A simple approach is to

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:21

assume any newly arriving application to be completely trustworthy and up-
date its trust values (and those of other applications for it) dynamically, as
described below. A more sophisticated approach would consider the burstiness
in an application resource needs as an indicator of how much other applications
may trust it. Intuitively, already placed applications should have lower trust
values for more bursty applications.

Our platform would employ dynamic measurements to keep track of chang-
ing resource needs of applications. Details of this mechanism appear in
Section 3.4. These measurements would be used to update the mutual trust
values of co-located applications. Applications whose resource usage behavior
deviates from their expected profiles would decrease in how much other applica-
tions should trust them. Once such updated trust values have been determined,
the platform can employ the enhanced placement algorithm described below for
determining where to host various capsules.

3.3.2 Trust-Aware Placement Mechanisms. The policies outlined in the
previous section can be modified to account for this notion of potentially an-
tagonistic applications (as determined by an external policy). To do so, we en-
hance the bipartite graph with a weight on each edge. The weight of an edge is
the trust value of the least trust-worthy application capsule on that node and
the current application. Edges with a weight 0 are deleted. Given the result-
ing bipartite graph, we need to pick a placement that attempts to maximize
the sum of the weights of the chosen edges (which ensures that capsules get
placed onto nodes running applications that are trusted to a greater extent).
The resulting placement decisions are driven by two considerations: (i) metrics
such as best-fit, worst-fit or the overbooking tolerance (which impacts the ef-
fective platform capacity), and (ii) the weight of the edges (which determines
the level of trust between collocated capsules). Such decisions can be made by
computing a weighted sum of the two metrics—namely the nature of the “fit”
and the weight of the edge—and picking a feasible node with the maximum
weighted sum. Thus, we can ensure that external policy constraints are taken
into account when making placement decisions.

We now outline an algorithm that a hosting platform can use to determine
the “most preferred” placement. We reduce our placement problem to a well-
known graph-theoretic problem. The first step in our reduction consists of
modifying the weights on the edges of our feasibility graph to ensure that
lower weights mean higher preference. This os done simply by replacing the
weight of each edge by its reciprocal. As an example, see the graph on the
left of Figure 7 wherein capsule C1 prefers node N2 more than node N1,
etc.

The placement problem in such scenarios is to find a maximum matching of
minimum weight in this weighted graph. This placement problem reduces to
the Minimum-Weight Perfect Matching Problem.

Minimum-Weight Perfect Matching (MWPM). A perfect matching in a
graph G is a subset of edges that “touch” each vertex exactly once. Given a real
weight ce for each edge e, the MWPM requires one to find a perfect matching
M whose weight,

∑
e∈M ce, is minimum.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:22 • B. Urgaonkar et al.

Fig. 7. Reducing Minimum-Weight Maximum Matching to Minimum-Weight Perfect Matching.

The reduction works as follows: By normalization, we may assume that each
weight ω in the feasibility graph G lies in the range 0 ≤ ω ≤ 1 and that the
weights sum to 1. Let there be m capsules and N ≥ m nodes.3 Create an aug-
mented graph G̃ by adding N −m new, dummy capsules and unit-weight edges
connecting each with all nodes. Figure 7 exemplifies this reduction. The left-
hand graph G shows the normalized preferences of the capsules C1, C2, C3 for
their feasible nodes. The right-hand graph G̃ adds a new capsule, C4, to equal-
ize the numbers of capsules and nodes, and adds unit-weight edges between C4
and all nodes. (Since the weights of the original edges do not change, they are
not shown in G̃.)

LEMMA 2. A matching of size m and cost c exists in the feasibility graph G
of an application with m capsules and a cluster with N ≥ m nodes if, and only
if, a perfect matching of cost (c + N − m) exists in the augmented graph G̃.

PROOF.
(⇒) Given a matching M of size m and cost c in G, we construct a perfect

matching M̃ in G̃ as follows. M̃ contains all edges in M , in addition to edges
that “touch” each dummy capsule. To choose these latter edges, we consider
dummy capsules one by one (in any order), and, for each, we add to M̃ an edge
connecting it to any as-yet “untouched” node. Since G admits a matching of size
m, and since each dummy capsule connects to all N nodes, G̃ is certain to have
a size-N (hence, perfect) matching. Further, since each edge that “touches” a
dummy capsule has unit weight, and there are (N − m) such edges, the cost of
M̃ is c + (N − m).

(⇐) Let G̃ admit a perfect matching M̃ of cost c + N −m. Consider the set M
comprising all m edges in M̃ that do not “touch” a dummy capsule. Since M̃ is
a matching in G̃, M is a matching in G. Moreover, the cost of M is just N − m
less than the cost of M̃ , namely, c.

Thus, the reduction preceding Lemma 2 yields the desired placement algo-
rithm. We construct the feasibility graph G A for application A and augment it
to G̃ A. If G̃ A contains a perfect matching, then we remove the edges that “touch”
dummy capsules and obtain the desired placement. If G̃ A does not contain a

3If m ≥ N , then this application cannot be placed on this hosting platform.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:23

perfect matching, then we know that A cannot be placed. One finds polynomial-
time algorithms for MWPM in Edmonds [1965] and Cook and Rohe [1999].

3.4 Handling Dynamically Changing Resource Requirements

Our discussion thus far has assumed that the resource requirements of an
application at run-time do not change after the initial profiling phase. In re-
ality though, resource requirements change dynamically over time, in tandem
with the workload seen by the application. Hosting platforms need to employ
dynamic capacity provisioning to match the resources assigned to hosted ap-
plications to their varying workloads [Benani and Menasce 2005; Ranjan et al.
2002; Urgaonkar et al. 2005a; Appleby et al. 2001; Chase and Doyle 2001; Chen
et al. 2005; Aron et al. 2000]. How should a hosting platform that employs over-
booking of resources implement dynamic capacity provisioning? In this section,
we outline our approach to address this question.

First, recall that we provision resources based on a high percentile of the
application’s resource usage distribution. Consequently, variations in the ap-
plication workload that affect only the average resource requirements of the
capsules, but not the tail of the resource usage distribution, will not result in
violations of the probabilistic guarantees provided by the hosting platform. In
contrast, workload changes that cause an increase in the tail of the resource
usage distribution will certainly affect application QoS guarantees.

How a platform should deal with such changes in resource requirements
depends on several factors. Since we are interested in yield management, the
platform should increase the resources allocated to an overload application
only if it increases revenues for the platform provider. Thus, if an application
provider only pays for a fixed amount of resources, there is no economic incentive
for the platform provider to increase the resource allocation beyond this limit
even if the application is overloaded. In contrast, if the contract between the
application and platform provider permits usage-based charging (i.e., charging
for resources based on the actual usage, or a high percentile of the usage4), then
allocating additional resources in response to increased demand is desirable
for maximizing revenue. In such a scenario, handling dynamically changing
requirements involves two steps: (i) detecting changes in the tail of the resource
usage distribution, and (ii) reacting to these changes by varying the actual
resources allocated to the application.

To detect such changes in the tail of an application’s resource usage distribu-
tion, we propose to conduct continuous, on-line profiling of the resource usage of
all capsules using low-overhead profiling tools. This would be done by recording
the CPU scheduling instants, network transmission times and packet sizes for
all processes over intervals of a suitable length. At the end of each interval,
this data would be processed to construct the latest resource usage distribu-
tions for all capsules. An application overload would manifest itself through an
increased concentration in the high percentile buckets of the resource usage
distributions of its capsules.

4ISPs charge for network bandwidth in this fashion—the customer pays for the 95th percentile of

it s bandwidth usage over a certain period.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:24 • B. Urgaonkar et al.

Fig. 8. Demonstration of how an application overload may be detected by comparing the latest

resource usage profile with the original offline profile.

We present the results of a simple experiment to illustrate this. Figure 8(a)
shows the CPU usage distribution of the Apache Web server obtained via of-
fline profiling. The workload for the Web server was generated by using the
SPECWeb99 benchmark emulating 50 concurrent clients with 50% dynamic
cgi-bin requests. The offline profiling was done over a period of 30 minutes.
Next, we assumed an overbooking tolerance of 1% for this Web server cap-
sule. As described in Section 2.3, it was assigned a CPU rate of 0.29 (corre-
sponding to the 99th percentile of its CPU usage distribution). The remaining
capacity was assigned to a greedy dhrystone application (this application per-
forms compute-intensive integer computations and greedily consumes all re-
sources allocated to it). The Web server was then subjected to exactly the same
workload (50 clients with 50% cgi-bin requests) for 25 minutes, followed by a
heavier workload consisting of 70 concurrent clients with 70% dynamic cgi-bin
requests for 5 minutes. The heavier workload during the last 5 minutes was

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:25

to simulate an unexpected flash crowd. The Web server’s CPU usage distribu-
tion was recorded over periods of length 10 minute each. Figure 8(b) shows
the CPU usage distribution observed for the Web server during a period of ex-
pected workload. We find that this profile is very similar to the profile obtained
using offline measurements, except being upper-bounded by the CPU rate as-
signed to the capsule. Figure 8(c) plots the CPU usage distribution during the
period when the Web server was overloaded. We find an increased concentra-
tion in the high percentile regions of this distribution compared to the original
distribution.

The detection of application overload would trigger remedial actions that
would proceed in two stages. First, new resource requirements would be com-
puted for the affected capsules. Next, actions would be taken to provide the
capsules the newly computed resource shares—this may involve increasing
the resource allocations of the capsules, or moving the capsules to nodes with
sufficient resources. Implementing and evaluating these techniques for han-
dling application overloads are part of our ongoing research on shared hosting
platforms. We have designed, implemented, and evaluated such remedial ac-
tions in a recent paper on dynamic capacity provisioning in hosting platforms
[Urgaonkar et al. 2005b]. These techniques can be used by a shared hosting
platform employing resource overbooking to dynamically adjust the placement
of hosted applications in response to varying workloads.

4. IMPLEMENTATION CONSIDERATIONS

In this section, we first discuss implementation issues in integrating our re-
source overbooking techniques with OS resource allocation mechanisms. We
then present an overview of our prototype implementation.

4.1 Providing Application Isolation at Run Time

The techniques described in the previous section allow a platform provider to
overbook platform resources and yet provide guarantees that the QoS require-
ments of applications will be met. The task of enforcing these guarantees at
run-time is the responsibility of the OS kernel. To meet these guarantees, we
assume that the kernel employs resources allocation mechanisms that sup-
port some notion of quality of service. Numerous such mechanisms—such as
reservations, shares and token bucket regulators [Banga et al. 1999; Duda and
Cheriton 1999; Jones et al. 1997; Leslie et al. 1996]—have been proposed re-
cently. All of these mechanisms allow a certain fraction of each resource (CPU
cycles, network interface bandwidth) to be reserved for each application and
enforce these allocations on a fine time scale.

In addition to enforcing the QoS requirements of each application, these
mechanisms also isolate applications from one another. By limiting the re-
sources consumed by each application to its reserved amount, the mechanisms
prevent a malicious or overloaded application from grabbing more than its allo-
cated share of resources, thereby providing application isolation at run-time—
an important requirement in shared hosting environments running untrusted
applications.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:26 • B. Urgaonkar et al.

Our overbooking techniques can exploit many commonly used QoS-aware
resource allocation mechanisms. Since the QoS requirements of an application
are defined in a OS- and mechanism-independent manner, we need to map these
OS-independent QoS requirements to mechanism-specific parameter values.
We outline these mappings for three commonly-used QoS-aware mechanisms.

CPU Reservations. A reservation-based CPU scheduler [Jones et al. 1997;
Leslie et al. 1996] requires the CPU requirements to be specified as a pair (x, y)
where the capsule desires x units of CPU time every y time units (effectively,
the capsule requests x

y fraction of the CPU). For reasons of feasibility, the sum

of the requests allocations should not exceed 1 (i.e.,
∑

j
x j

y j
≤ 1). In such a

scenario, the QoS requirements of a capsule with token bucket parameters
(σi, ρi) and an overbooking tolerance Oi can be translated to CPU reservation
by setting (1− Oi) ·σi = xi

yi
and (1− Oi) ·ρi = xi. To see why, recall that (1− Oi) ·σi

denotes the rate of resource consumption of the capsule in the presence of
overbooking, which is same as xi

yi
. Further, since the capsule can request xi

units of the CPU every yi time units, and in the worst case, the entire xi units
may be requested continuously, we set the burst size to be (1 − Oi) · ρi = xi.
These equations simplify to xi = (1 − Oi) · ρi and yi = ρi/σi.

Proportional-Share and Lottery Schedulers. Proportional-share and lottery
schedulers [Duda and Cheriton 1999; Goyal et al. 1996a, 1996b; Waldspurger
and Weihl 1994] enable resources to be allocated in relative terms—in ei-
ther case, a capsule is assigned a weight wi (or wi lottery tickets) causing
the scheduler to allocate wi

∑
j w j fraction of the resource. Further, two cap-

sules with weights wi and wj are allocated resources in proportion to their
weights (wi : wj). For such schedulers, the QoS requirements of a capsule can
be translated to a weight by setting wi = (1 − Oi) · σi. By virtue of using a sin-
gle parameter wi to specify the resource requirements, such schedulers ignore
the burstiness ρ in the resource requirements. Consequently, the underlying
scheduler will only approximate the desired QoS requirements. The nature of
approximation depends on the exact scheduling algorithm—the finer the time-
scale of the allocation supported by the scheduler, the better will the actual
allocation approximate the desired requirements.

Rate Regulators. Rate regulators are commonly used to police the network
interface bandwidth used by an application. Such regulators limit the sending
rate of the application based on a specified profile. A commonly used regulator
is the token bucket regulator that limits the amount of bytes transmitted by an
application to σ · t + ρ over any interval t. Since we model resource usage of a
capsule as a token bucket, the QoS requirements of a capsule trivially map to
an actual token bucket regulator and no special translation is necessary.

4.2 Prototype Implementation

We have implemented a Linux-based shared hosting platform that incorpo-
rates the techniques discussed in the previous sections. Our implementation
consists of three key components: (i) a profiling module that allows us to profile

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:27

applications and empirically derive their QoS requirements, (ii) a control plane
that is responsible for resource overbooking and capsule placement, and (iii) a
QoS-enhanced Linux kernel that is responsible for enforcing application QoS
requirements.

The profiling module runs on a set of dedicated (and therefore isolated) plat-
form nodes and consists of a vanilla Linux kernel enhanced with the Linux
trace toolkit. As explained in Section 2, the profiling module gathers a kernel
trace of CPU and network activities of each capsule. It then post-processes this
information to derive an On-Off trace of resource usage and then derives the
usage distribution U and the token bucket parameters for this usage.

The control plane is responsible for placing capsules of newly arriving ap-
plications onto nodes while overbooking node resources. The control plane also
keeps state consisting of a list of all capsules residing on each node and their QoS
requirements. It also maintains information about the hardware characteris-
tics of each node. The requirements of a newly arriving application are specified
to the control plane using a resource specification language. This specification
includes the CPU and network bandwidth requirements of each capsule and the
trust vector. The control plane uses this specification to derive a placement for
each capsule as discussed in Section 3.2. In addition to assigning each capsule
to a node, the control plane also translates the QoS parameters of the capsules
to parameters of commonly used resource allocation mechanisms (discussed in
the previous section).

The third component, namely the QoS-enhanced Linux kernel, runs on
each platform node and is responsible for enforcing the QoS requirements of
capsules at run time. We choose Linux over other operating system kernels
since a number of QoS-aware resource allocation mechanisms have already
been implemented in Linux, allowing us to experiment with these mecha-
nisms. For the purposes of this article, we implement the H-SFQ proportional-
share CPU scheduler [Goyal et al. 1996a, 1996b]. H-SFQ is a hierarchical
proportional-share scheduler that allows us to group resource principals (pro-
cesses, lightweight processes) and assign an aggregate CPU share to the entire
group. This functionality is essential since a capsule contains all processes of
an application that are collocated on a node and the QoS requirements are
specified for the capsule as a whole rather than for individual resource prin-
cipals. To implement such an abstraction, we create a separate node in the
H-SFQ scheduling hierarchy for each capsule, and attach all resource princi-
pals belonging to a capsule to this node. The node is then assigned a weight
(determined using the capsule’s QoS requirements) and the CPU allocation of
the capsule is shared by all resource principals of the capsule.5 We implement
a token bucket regulator to provide QoS guarantees at the network interface
card. Our rate regulator allows us to associate all network sockets belonging
to a group of processes to a single token bucket. We instantiate a token bucket
regulator for each capsule and regulate the network bandwidth usage of all
resource principals contained in this capsule using the (σ, ρ) parameters of the

5The use of the scheduling hierarchy to further multiplex capsule resources among resource prin-

cipals in a controlled way is clearly feasible but beyond the scope of this article.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:28 • B. Urgaonkar et al.

capsule’s network bandwidth usage. In Section 5.3, we experimentally demon-
strate the efficacy of these mechanisms in enforcing the QoS requirements of
capsules even in the presence of overbooking. While we have experimented with
other resource allocation mechanisms such as reservations [Leslie et al. 1996]
and have found that overbooking techniques indeed work well with other com-
monly used mechanisms, we omit here the results obtained using these other
mechanisms due to space constraints.

5. EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental evaluation. The setup
used in our experiments is identical to that described in Section 2.4—we employ
a cluster of Linux-based servers as our shared hosting platform. Each server
runs a QoS-enhanced Linux kernel consisting of the H-SFQ CPU scheduler and
a leaky bucket regulator for the network interface. The control plane for the
shared platform implements the resource overbooking and capsule placement
strategies discussed earlier in this article. For ease of comparison, we use the
same set of applications discussed in Section 2.4 and their derived profiles (see
Table I) for our experimental study.

Since our resource overbooking techniques apply only to CPU and network
bandwidth, in all the experiments presented in this section, we ensure that the
working sets of co-located applications can be accommodated within the RAM
present in the server. We similarly ensure that the sum of the disk bandwidth
needs of co-located applications can be comfortably accommodated within the
aggregate available disk bandwidth. All the conclusions drawn from our empir-
ical evaluation, therefore, hold subject to the condition that memory and disk
bandwidth were available in plenty in any shared server.

5.1 Efficacy of Resource Overbooking

Our first experiment examines the efficacy of overbooking resources in shared
Web hosting platforms—a type of shared hosting platform that runs only Web
servers. Each Web server running on the platform is assumed to conform to one
of the four Web server profiles gathered from our profiling study (two of these
profiles are shown in Table I; the other two employed varying mixes of static and
dynamic SPECWeb99 requests). The objective of our experiment is to examine
how many such Web servers can be supported by a given platform configuration
for various overbooking tolerances. We vary the overbooking tolerance from 0%
to 10%, and for each tolerance value, attempt to place as many Web servers
as possible until the platform resources are exhausted. We first perform the
experiment for a cluster of 5 nodes (identical to our hardware configuration)
and then repeat it for cluster sizes ranging from 16 to 128-nodes (since we
lack clusters of these sizes, for these experiments, we only examine how many
applications can be accommodated on the platform and do not actually run
these applications). Figure 9 depicts our results with 95% confidence intervals.
The figure shows that, the larger the amount of overbooking, the larger is the
number of Web servers that can be run on a given platform. Specifically, for a
128-node platform, the number of Web servers that can be supported increases

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:29

Fig. 9. Benefits of resource overbooking in a Web hosting platform.

from 307 when no overbooking is employed to over 1800 for 10% overbooking
(a factor of 5.9 increase). Even for a modest 1% overbooking, we see a factor of
2 increase in the number of Web servers that can be supported on platforms
of various sizes. Thus, even modest amounts of overbooking can significantly
enhance revenues for the platform provider.

Next, we examine the benefits of overbooking resources in a shared host-
ing platform that runs a mix of streaming servers, database servers and Web
servers. To demonstrate the impact of burstiness on overbooking, we first focus
only on the streaming media server. As shown in Table I, the streaming server
(with 20 clients) exhibits less burstiness than a typical Web server, and conse-
quently, we expect smaller gains due to resource overbooking. To quantify these
gains, we vary the platform size from 5 to 128 nodes and determine the number
of streaming servers that can be supported with 0%, 1% and 5% overbooking.
Figure 10(a) plots our results with 95% confidence intervals. As shown, the
number of servers that can be supported increases by 30–40% with 1% over-
booking when compared to the no overbooking case. Increasing the amount of
overbooking from 1% to 5% yields only a marginal additional gain, consistent
with the profile for this streaming server shown in Table I (and also indicative
of the less-tolerant nature of this soft real-time application). Thus, less bursty
applications yield smaller gains when overbooking resources.

Although the streaming server does not exhibit significant burstiness, large
statistical multiplexing gains can still accrue by co-locating bursty and non-
bursty applications. Further, since streaming server is heavily network-bound
and uses a minimal amount of CPU, additional gains are possible by co-
locating applications with different bottleneck resources (e.g., CPU-bound and
network-bound applications). To examine the validity of this assertion, we con-
duct an experiment where we attempt to place a mix of streaming, Web and
database servers—a mix of CPU-bound and network-bound as well as bursty

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:30 • B. Urgaonkar et al.

Fig. 10. Benefits of resource overbooking for a less bursty streaming server application and for

application mixes.

and non-bursty applications. Figure 10(b) plots the number of applications sup-
ported by platforms of different sizes with 1% overbooking. As shown, an identi-
cal platform configuration is able to support a large number of applications than
the scenario where only streaming servers are placed on the platform. Specif-
ically, for a 32-node cluster, the platform supports 36 and 52 additional Web
and database servers in addition to the approximately 80 streaming servers
that were supported earlier. We note that our capsule placement algorithms
are automatically able to extract these gains without any specific “tweaking”
on our part. Thus, collocating applications with different bottleneck resources
and different amounts of burstiness enhance additional statistical multiplexing
benefits when overbooking resources.

It must be noted that these gains offered by overbooking are compared to
schemes that provision resources for applications based on the peak demands.
Whereas our techniques explicitly characterize the tail of resource usage and
provision based on it, certain applications with rate regulators embedded in
them are implicitly provisioned based on tails. The peak demands observed for
such applications by our offline profiling technique would in fact correspond
to some high percentile of their “actual” resource usage (i.e., if there were no
rate regulation.) Clearly, the benefits of overbooking would turn out to be less
impressive for such applications since their a significant part of their burstiness
is likely to have been removed by the rate regulators.

5.2 Capsule Placement Algorithms

Our next experiment compares the effectiveness of the best-fit, worst-fit and
random placement algorithms discussed in Section 3.2. Using our profiles, we
construct two types of applications: a replicated Web server and an e-commerce
application consisting of a front-end Web server and a back-end database server.
Each arriving application belongs to one of these two categories and is assumed
to consist of 2–10 capsules, depending on the degree of replication. The over-
booking tolerance is set to 5%. We then determine the number of applications

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:31

Fig. 11. Performance of various capsule placement strategies.

that can be placed on a given platform by different placement strategies.
Figure 11(a) depicts our results. As shown, best-fit and random placement yield
similar performance, while worst-fit outperforms these two policies across a
range of platform sizes. This is because best-fit places capsules onto nodes with
smaller unused capacity, resulting in “fragmentation” of unused capacity on
a node; the leftover capacity may be wasted if no additional applications can
be accommodated. Worst fit, on the other hand, reduces the chances of such
fragmentation by placing capsules onto nodes with the larger unused capacity.
While such effects become prominent when application capsules have widely
varying requirements (as observed in this experiment), they become less notice-
able when the application have similar resource requirements. To demonstrate
this behavior, we attempted to place Quake game servers onto platforms of
various sizes. Observe from Table I that the game server profiles exhibit less
diversity than a mix of Web and database servers. Figure 11(b) shows that, due

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:32 • B. Urgaonkar et al.

Table II. Effectiveness of Kernel Resource Allocation Mechanisms

Application Metric Isolated Node 100th 99th 95th Average

Apache Throughput 67.93 ± 2.08 67.51 ± 2.12 66.91 ± 2.76 64.81 ± 2.54 39.82 ± 5.26

(req/s)

PostgreSQL Throughput 22.84 ± 0.54 22.46 ± 0.46 22.21 ± 0.63 21.78 ± 0.51 9.04 ± 85

(transactions/s)

Streaming Number of 0 0 2 40 98

violations

All results are shown with 95% confidence intervals.

to the similarity in the application resource requirements, all policies are able
to place a comparable number of game servers.

Finally, we examine the effectiveness of taking the overbooking tolerance into
account when making placement decisions. We compare the worst-fit policy to
an overbooking-conscious worst-fit policy. The latter policy chooses the three
worst-fits among all feasible nodes and picks the node that best matches the
overbooking tolerance of the capsule. Our experiment assumes a Web hosting
platform with two types of applications: less-tolerant Web servers that permit
1% overbooking and more tolerant Web servers that permit 10% overbooking.
We vary the platform size and examine the total number of applications placed
by the two policies. As shown in Figure 11(c), taking overbooking tolerances
into account when making placement decisions can help increase the number
of applications placed on the cluster. However, we find that the additional gains
are small (< 6% in all cases), indicating that a simple worst-fit policy may suffice
for most scenarios.

5.3 Effectiveness of Kernel Resource Allocation Mechanisms

While our experiments thus far have focused on the impact of overbooking
on platform capacity, in our next experiment, we examine the impact of over-
booking on application performance. We show that combining our overbooking
techniques with kernel-based QoS resource allocation mechanisms can indeed
provide application isolation and quantitative performance guarantees to appli-
cations (even in the presence of overbooking). We begin by running the Apache
Web server on a dedicated (isolated) node and examine its performance (by
measuring throughput in requests/s) for the default SPECWeb99 workload. We
then run the Web server on a node running our QoS-enhanced Linux kernel.
We first allocate resources based on the 100th percentile of its usage (no over-
booking) and assign the remaining capacity to a greedy dhrystone application
(this application performs compute-intensive integer computations and greed-
ily consumes all resources allocated to it). We measure the throughput of the
Web server in presence of this background dhrystone application. Next, we re-
serve resources for the Web server based on the 99th and the 95th percentiles,
allocate the remaining capacity to the dhrystone application, and measure the
server throughput. Table II depicts our results. As shown, provisioning based
on the 100th percentile yields performance that is comparable to running the
application on an dedicated node. Provisioning based on the 99th and 95th
percentiles results in a small degradation in throughput, but well within the

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:33

Fig. 12. Effect of overbooking on the PostgreSQL server CPU profile.

permissible limits of 1% and 5% degradation, respectively, due to overbooking.
Table II also shows that provisioning based on the average resource require-
ments results in a substantial fall in throughput, indicating that reserving
resources based on mean usage is not advisable for shared hosting platforms.

We repeat the above experiment for the streaming server and the database
server. The background load for the streaming server experiment is generated
using a greedy UDP sender that transmits network packets as fast as possi-
ble, while that in case of the database server is generated using the dhrystone
applications. In both cases, we first run the application on an isolated node
and then on our QoS-enhanced kernel with provisioning based on the 100th,
99th and the 95th percentiles. We measure the throughput in transaction/s
for the database server and the mean number of violations (playback discon-
tinuities) experienced by a client of the streaming media server. Table II plots
our results. Like in the Web server, provisioning based on the 100th percentile
yields performance comparable to running the application on an isolated node,
while small amounts of overbooking result in correspondingly small amounts
of degradation in application performance.

For each of the above scenarios, we also computed the application profile in
the presence of background load and overbooking and compared it to the profile
gathered on the isolated node. Figure 12 shows one such pair and compares
the profile of the database server on the isolated node with that obtained with
background load and 1% overbooking. As can be seen, the two profiles look sim-
ilar, indicating that the presence of background load does not interfere with the
application behavior, and hence, the profiles obtained by running the applica-
tion on an isolated node are representative of the behavior on an overbooked
node (for a given workload).

Together, these results demonstrate that our kernel resource allocation
mechanisms are able to successfully isolate applications from one another and
are able to provide quantitative performance guarantees even when resources
are overbooked.

5.4 Determining the Degree of Overbooking

In this section, we present an experimental illustration of the empiri-
cal approach for determining the degree of overbooking that we presented

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:34 • B. Urgaonkar et al.

in Section 2.3.2. We experiment with the streaming media server in this
section.

The network bandwidth profile for the streaming media server with 20 clients
was presented in Figure 5 and selected percentiles of the distribution were pre-
sented in Table I. We will illustrate our approach by comparing the expected
revenue from the streaming media server under degrees of overbooking cor-
responding to these selected percentiles. For illustrative purposes, we assume
that the streaming media server pays the hosting platform $5 for every suc-
cessfully streamed movie. However, it imposes a penalty for every playback
discontinuity experienced by its clients. We consider a wide range of penalty
values from the set {$0.01, $0.1, $0.25, $1}. For the purposes of this article, we
assume that when we provision the network bandwidth based on a certain
percentile lower than the peak, the residual bandwidth (which would be made
available to another co-located application) yields the same revenue per unit
bandwidth as yielded by the streaming media server.6 We subject the stream-
ing media server to the workload imposed by 20 clients under different degrees
of network bandwidth overbooking as described in Section 2.3.2. For our four
choices of the penalty paid for playback discontinuities and with the identical
revenue per unit bandwidth assumed above, we obtain Figures 13(a)–(d). Each
figure plots the variation of expected revenue (what the hosted applications
pay the platform minus the penalty due to QoS violations). Note that we have
also assumed that the residual bandwidth is provisioned in a way that does not
cause any penalties, another simplifying assumption in our current approach.

The monotonically increasing revenue in Figure 13(a) simply indicates that
the first penalty function of $0.01 per playback discontinuity is an impractical
and injudicious choice under the assumed charging model. For the remaining
three penalty functions, an overbooking of 5% is expected to yield the maximum
revenue (Figures 13(b)–(d).)

6. RELATED WORK

6.1 Prior Research on Resource Management in Clustered Environments

Research on clustered environments over the past decade has spanned a num-
ber of issues. Systems such as Condor have investigated techniques for har-
vesting idle CPU cycles on a cluster of workstations to run batch jobs [Litzkow
et al. 1988]. The design of scalable, fault-tolerant network services running on
server clusters has been studied in Fox et al. [1997]. Use of virtual clusters
to manage resources and contain faults in large multiprocessor systems has
been studied in Govil et al. [1999]. Scalability, availability, and performance
issues in dedicated clusters have been studied in the context of clustered mail
servers [Saito et al. 1999] and replicated Web servers [Aron et al. 2000]. Numer-
ous middleware-based approaches for clustered environments have also been

6Note that, in general, different applications would yield different amounts of revenue per unit

resource. A general optimization problem capturing this is part of future work and is beyond the

scope of the current work. However, we believe our simple example is sufficiently illustrative of the

key ideas.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:35

Fig. 13. Expected revenue from the streaming media server with different penalties per playback

discontinuity.

proposed [Corba 2006]. Ongoing efforts in the grid computing community have
focused on developing standard interfaces for resource reservations in clustered
environments [GridForum02b 2002].

Finally, efforts such as gang scheduling and co-scheduling have investigated
the issue of coordinating the scheduling of tasks in distributed systems [Arpaci-
Dusseau 2001; Hori et al. 1996]; however, neither technique incorporates the
issue of quality-of-service while making scheduling decisions.

6.2 Operating Systems Support for QoS and Dynamic Resource Management

In the context of QoS-aware resource allocation, numerous efforts over the past
decade have developed predictable resource allocation mechanisms for single

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:36 • B. Urgaonkar et al.

machine environments [Banga et al. 1999; Blanquer et al. 1999; Berger et al.
2003; Duda and Cheriton 1999; Goyal et al. 1996a, 1996b; Jones et al. 1997;
Lin et al. 1998; Leslie et al. 1996; Sundaram et al. 2000; Verghese et al. 1998].
Such techniques form the building blocks for resource allocation in clustered
environments. Recent research on designing efficient virtual machine monitors
has made available systems infrastructure that can provide improved consoli-
dation of applications in a shared hosting platform (by allowing heterogeneous
operating systems to be co-located) as well as more flexible migration of applica-
tion/capsules in response to changing workloads [Barham et al. 2003; Govindan
et al. 2007; Clark et al. 2005; Menon et al. 2006, 2005; Sapuntzakis et al. 2002;
M. Nelson and Hutchins 2005; Waldspurger 2002; Whitaker et al. 2002].

6.3 Resource Management in Hosting Platforms

Research on resource management in hosting platforms spans the topics of spec-
ification of service-level agreements (SLAs), techniques to realize them such
as static capacity planning (similar to resource requirement inference which
we discuss separately below), dynamic capacity provisioning, and admission
control.

The WSLA project at IBM [WSLA] addresses service level management is-
sues and challenges in designing an unambiguous and clear specification of
SLAs that can be monitored by the service provider, customer, and even by a
third-party.

The work on dynamic provisioning of a platform’s resources may be classified
into two categories. Some papers have addressed the problem of provisioning
resources at the granularity of individual servers as in our work. Aron et al.
[2000], Benani and Menasce [2005], Ranjan et al. [2002], and Urgaonkar et al.
[2005a] consider the problem of dynamically varying the number of servers
assigned to a single service hosted on a data center. The Oceano project at IBM
[Appleby et al. 2001] has developed a server farm in which servers can be moved
dynamically across hosted applications depending on their changing needs.

Other papers have considered the provisioning of resources at finer granu-
larity of resources. Muse [Chase and Doyle 2001; Chen et al. 2005] presents
an architecture for resource management in a hosting center. The system com-
putes resource allocations by attempting to maximize the overall profit. Cluster
Reserves [Aron et al. 2000] has also investigated resource allocation in server
clusters. The work assumes a large application running on a cluster, where
the aim is to provide differentiated service to clients based on some notion of
service class. This is achieved by making the OS schedulers provide fixed re-
source shares to applications spanning multiple nodes. The Cluster-On Demand
(COD) [Chase et al. 2003] work presents an automated framework to manage
resources in a shared hosting platform. COD introduces the notion of a virtual
cluster, which is a functionally isolated group of hosts within a shared hardware
base. A key element of COD is a protocol to re-size virtual clusters dynamically
in cooperation with pluggable middleware components. Chandra et al. [2003a]
model a server resource that services multiple applications as a GPS system
and presents online workload prediction and optimization-based techniques for

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:37

dynamic resource allocation. Urgaonkar and Shenoy [Urgaonkar and Shenoy
2004b] address the problem of providing resource guarantees to distributed
applications running on a shared hosting platform.

Statistical admission control techniques that overbook resources have been
studied in the context of video-on-demand servers [Vin et al. 1994] and ATM
networks [Boorstyn et al. 2000]. To the best of our knowledge, ours is the first
work to consider resource overbooking in context of shared hosting platforms
(i.e., clustered environments).

Numerous papers address the problem of maintaining SLAs by using ad-
mission control [Voigt et al. 2001; Welsh and Culler 2003; Iyer et al. 2000;
Cherkasova and Phaal 1999; Kanodia and Knightly 2000; Li and Jamin 2000;
Knightly and Shroff 1999; Verma and Ghosal 2003; Elnikety et al. 2004;
Jamjoom et al. 2000].

6.4 Resource Requirement Inference

Numerous papers have developed analytical models for various kinds of ap-
plications. We take an empirical approach in this paper as these analytical
approaches are only suitable for describing average resource requirements of
applications and are therefore of limited use in overbooking of resources. Mod-
eling of single-tier Internet applications, of which HTTP servers are the most
common example, has been studied extensively. A queuing model of a Web
server serving static content was proposed in Slothouber [1996]. The model
employs a network of four queues—two modeling the Web server itself, and the
other two modeling the Internet communication network. A queuing model for
performance prediction of single-tier Web servers with static content was pro-
posed in Doyle et al. [2003]. This approach (i) explicitly models CPU, memory,
and disk bandwidth in the Web server, (ii) utilizes knowledge of file size and
popularity distributions, and (iii) relates average response time to available re-
sources. A GPS-based queuing model of a single resource, such as the CPU, at
a Web server was proposed in Chandra et al. [2003a]. The model is parameter-
ized by online measurements and is used to determine the resource allocation
needed to meet desired average response time targets. A G/G/1 queuing model
for replicated single-tier applications (e.g., clustered Web servers) has been
proposed in Urgaonkar and Shenoy [2004a]. The architecture and prototype
implementation of a performance management system for cluster-based Web
services was proposed in Levy et al. [2003]. The work employs an M/M/1 queu-
ing model to compute responses times of Web requests. A model of a Web server
for the purpose of performance control using classical feedback control theory
was studied in Abdelzaher et al. [2002]; an implementation and evaluation us-
ing the Apache Web server was also presented in the work. A combination of a
Markov chain model and a queuing network model to capture the operation of a
Web server was presented in Menasce [2003]—the former model represents the
software architecture employed by the Web server (e.g., process-based versus
thread-based) while the latter computes the Web server’s throughput.

A few recent efforts have focused on the modeling of multi-tier applications.
However, many of these efforts either make simplifying assumptions or are

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:38 • B. Urgaonkar et al.

based on simple extensions of single-tier models. A number of papers have taken
the approach of modeling only the most constrained or the most bottlenecked tier
of the application. For instance, Villela et al. [2004] considers the problem of pro-
visioning servers for only the Java application tier; it uses an M/G/1/PS model
for each server in this tier. Similarly, the Java application tier of an e-commerce
application with N servers is modeled as a G/G/N queuing system in Ranjan
et al. [2002]. Other efforts have modeled the entire multi-tier application us-
ing a single queue—an example is Kamra et al. [2004], that uses a M/GI/1/PS
model for an e-commerce application. While these approaches are useful for
specific scenarios, they have many limitations. For instance, modeling only a
single bottlenecked tier of a multi-tier application will fail to capture caching
effects at other tiers. Such a model can not be used for capacity provisioning
of other tiers. Finally, as we show in our experiments, system bottlenecks can
shift from one tier to another with changes in workload characteristics. Under
these scenarios, there is no single tier that is the “most constrained”.

Some researchers have developed sophisticated queuing models capable of
capturing the simultaneous resource demands and parallel subpaths that occur
within a tier of a multi-tier application. An important example of such models
are Layered Queuing Networks (LQN). LQNs are an adaptation of the Extended
Queuing Network defined specifically to represent the fact that software servers
are executed on top of other layers of servers and processors, giving complex
combinations of simultaneous requests for resources [Liu et al. 2001; Franks
1999; Xu et al. 2006; Rolia and Sevcik 1995; Woodside and Raghunath 1995].
Kounev and Buchmann [2003] use a model based on a network of queues for
performance prediction of a 2-tier SPECjAppServer2002 application and solve
this model numerically using publicly available analysis software. Bennani
and Menasce [2005] model a multi-tier Internet service serving multiple types
of transactions as a network of queues with customers belonging to multiple
classes. The authors employ an approximate mean-value analysis algorithm
to develop an online provisioning technique using this model. Two of the co-
authors on this submission developed a queueing model for a multi-tier Internet
application that also employs mean-value analysis [Urgaonkar et al. 2005a].

Cohen et al. [2004] uses a probabilistic modeling approach called Tree-
Augmented Bayesian Networks (TANs) to identify combinations of system-
level metrics and threshold values that correlate with high-level performance
states—compliance with service-level agreements for average response time—
in a three-tier Web service under a variety of conditions. Experiments based on
real applications and workloads indicate that this model is a suitable candidate
for use in offline fault diagnosis and online performance prediction. Whereas it
would be a useful exercise to compare such a learning-based modeling approach
with our queuing-theory based model, it is beyond the scope of this article. In
the absence of such a comparative study and given the widely different nature
of these two modeling approaches, we do not make any assertions about the
pros and cons of our model over the TAN-based model.

Finally, following the appearance of our conference paper, Stewart and
Shen [2005] have employed an empirical characterization of the resource
requirements of multi-tier Internet applications similar to that developed by us.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:39

6.5 Yield Management

Yield management was first explored in the airline industry, particularly by
American Airlines [Davis 1994; Smith et al. 1992]. Yield management practices
have subsequently been also explored in certain IT areas such as telephony and
networking [Gupta et al. 1999; Vin et al. 1994; Boorstyn et al. 2000]. To the best
of our knowledge, our conference paper was the first to study YM in the domain
of Internet hosting.

There have recently been questions about how effective YM is in the big pic-
ture. A firm that wants to satisfy its customers and have them come back are
putting their customer relations in jeopardy by using YM practices. While this
statistic is impressive and shows how YM can be effective, it is also misleading.
Many economists argue that the benefits of YM are only felt up-front and are
short-lived. The costs of lower customer satisfaction and the loss of relationship
marketing can have longer more serious effects and in the end make it detri-
mental to the firm. Because American Airlines was a pioneer with YM, it is
obvious that the innovation will result in a large increase in revenue. However,
as the rest of the industry catches up with the technology if the YM systems, the
competitive advantage can be lost, while the long lasting costs are not. Also,
customers feel that the personal connection with the company is lost as the
company sees them only as revenue generators. This can result in the loss of
relationship marketing and goodwill between the parties. So it comes down to
a cost-benefit situation for the firm. The extra revenue now is the benefit and
loss of goodwill and possibly a drop in revenue in the future is the cost. It is of
course up to the firm to forecast if the benefits outweigh the costs. In this arti-
cle, we take an initial step towards studying such tradeoffs when using YM in
shared hosting platforms. Our approach is empirical in nature and is presented
in Section 5.4.

6.6 Management and Overbooking of Nontemporal Resources

Extensive existing research on determining working set sizes of applications
is relevant to the design of a shared hosting platform that aims at maximiz-
ing yield by packing applications on its server pool. A recent paper by Wald-
spurger investigates ways to overbook memory in consolidated servers using the
VMWare ESX virtualization engine [Waldspurger 2002]. Overbooking of mem-
ory needs to be carried out more conservatively than that of CPU and network
bandwidth since the performance degradation due to even slight overbooking
can be significant due to the high penalty of page faults. In a recent research
project, two of the authors (Urgaonkar and Shenoy) investigated the problem
of dynamically partitioning available memory among co-located applications
with the goal of minimizing the unfairness in CPU allocation that can result
under memory pressure [Berger et al. 2003]. Extensive research also exists on
partitioning disk bandwidth in predictable ways among applications accessing
shared storage [Shenoy and Vin 1998; Zhang et al. 2005a, 2005b]. The focus of
our work was on CPU and network bandwidth and these pieces of research on
managing memory and disk bandwidth are complementary to our work.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:40 • B. Urgaonkar et al.

6.7 Related Research on Placement/Packing

The placement problem that arises in our research is a variation of well-
known knapsack problems. Several similar packing problems have been stud-
ied, among others, in the context of placing files in parallel file stores [Lee et al.
2000]; task assignment in a distributed server system [Harchol-Balter 2000];
and store assignment for response time minimization [Verma and Anand 2006].

7. CONCLUDING REMARKS

In this article, we presented techniques for provisioning CPU and network
resources in shared hosting platforms running potentially antagonistic third-
party applications. We argued that provisioning resources solely based on the
worst-case needs of applications results in low average utilization, while pro-
visioning based on a high percentile of the application needs can yield statis-
tical multiplexing gains that significantly increase the utilization of the clus-
ter. Since an accurate estimate of an application’s resource needs is necessary
when provisioning resources, we presented techniques to profile applications
on dedicated nodes, while in service, and used these profiles to guide the place-
ment of application capsules onto shared nodes. We then proposed techniques
to overbook cluster resources in a controlled fashion. We conducted an empirical
evaluation of the degradation in QoS that such overbooking can result in. Our
evaluation enabled us to suggest rules-of-thumb for determining the degree of
overbooking that allows a hosting platform to achieve improvements in rev-
enue without compromising the QoS requirements of the hosted applications.
Our techniques, in conjunction with commonly used OS resource allocation
mechanisms, can provide application isolation and performance guarantees at
run-time in the presence of overbooking. We implemented our techniques in
a Linux cluster and evaluated them using common server applications. We
found that the efficiency benefits from controlled overbooking of resources can
be dramatic. Specifically, overbooking resources by as little as 1% increases the
utilization of the hosting platform by a factor of 2, while overbooking by 5–
10% results in gains of up to 500%. The more bursty the application resources
needs, the higher are the benefits of resource overbooking. More generally, our
results demonstrate the benefits and feasibility of overbooking resources for
the platform provider.

REFERENCES

ABDELZAHER, T., SHIN, K. G., AND BHATTI, N. 2002. Performance guarantees for web server end-

systems: A control-theoretical approach. IEEE Trans. Parall. Distrib. Syst. 13, 1 (Jan.).

ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HENZINGER, M., LUENG, S., VANDERVOORDE, M.,

WALDSPURGER, C., AND WEIHL, W. 1997. Continuous profiling: Where have all the cycles gone?

In Proceedings of the 16th ACM Symposium on Operating Systems Principles. ACM, New York,

1–14.

APPLEBY, K., FAKHOURI, S., FONG, L., GOLDSZMIDT, M. K. G., KRISHNAKUMAR, S., PAZEL, D., PERSHING, J.,

AND ROCHWERGER, B. 2001. Oceano—SLA-based management of a computing utility. In Pro-
ceedings of the IFIP/IEEE Symposium on Integrated Network Management. IEEE Computer

Society Press, Los Alamitos, CA.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:41

ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W. 2000. Cluster reserves: A mechanism for resource

management in cluster-based network servers. In Proceedings of the ACM SIGMETRICS Con-
ference. ACM, New York.

ARPACI-DUSSEAU, A. AND ARPACI-DUSSEAU, R. 2001. Information and control in gray-box systems. In

Proceedings of the ACM Symposium on Operating Systems Principles (SOSP 2001). ACM, New

York, 43–56.

ARPACI-DUSSEAU, A. C. 2001. Implicit coscheduling: Coordinated scheduling with implicit infor-

mation in distributed systems. ACM Trans. Comput. Syst. 19, 3, 283–331.

BANGA, G., DRUSCHEL, P., AND MOGUL, J. 1999. Resource containers: A new facility for resource

management in server systems. In Proceedings of the 3rd Symposium on Operating System Design
and Implementation (OSDI’99). 45–58.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBUER, R., PRATT, I., AND

WARFIELD, A. 2003. Xen and the art of virtulization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP). ACM, New York.

BENNANI, M. AND MENASCE, D. 2005. Resource allocation for autonomic data centers using analytic

performance models. In Proceedings of IEEE International Conference on Autonomic Computing
(ICAC-05). IEEE Computer Society Press, Los Alamitos, CA.

BERGER, E., KAPLAN, S., URGAONKAR, B., SHARMA, P., CHANDRA, A., AND SHENOY, P. 2003. Scheduler-

aware virtual memory management. In Poster at the 19th ACM Symposium on Operating Systems
Principles (SOSP 2003). ACM, New York.

BLANQUER, J., BRUNO, J., MCSHEA, M., OZDEN, B., SILBERSCHATZ, A., AND SINGH, A. 1999. Resource

management for QoS in Eclipse/BSD. In Proceedings of the FreeBSD’99 Conference.

BOORSTYN, R., BURCHARD, A., LIEBEHERR, J., AND OOTTAMAKORN, C. 2000. Statistical service as-

surances for traffic scheduling algorithms. IEEE J. Select. Areas Commun. 18, 12, 2651–

2664.

BURNETT, N., BENT, J., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. 2002. Exploiting gray-box

knowledge of buffer-cache management. In Proceedings of the USENIX Annual Technical
Conference.

CHANDRA, A., ADLER, M., GOYAL, P., AND SHENOY, P. 2000. Surplus fair scheduling: A proportional-

share CPU scheduling algorithm for symmetric multiprocessors. In Proceedings of the 4th Sym-
posium on Operating System Design and Implementation (OSDI 2000).

CHANDRA, A., GONG, W., AND SHENOY, P. 2003a. Dynamic resource allocation for shared data centers

using online measurements. In Proceedings of the 11th International Workshop on Quality of
Service (IWQoS 2003).

CHANDRA, A., GOYAL, P., AND SHENOY, P. 2003b. Quantifying the benefits of resource multiplexing

in on-demand data centers. In Proceedings of the 1st Workshop on Algorithms and Architectures
for Self-Managing Systems.

CHASE, J. AND DOYLE, R. 2001. Balance of power: Energy management for server clusters. In

Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII).
CHASE, J., GRIT, L., IRWIN, D., MOORE, J., AND SPRENKLE, S. 2003. Dynamic virtual clusters in a

grid site manager. In Proceedings of the 12th International Symposium on High Performance
Distributed Computing (HPDC-12).

CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A., WANG, Q., AND NATARAJAN, G. 2005. Managing

server energy and operational costs in hosting centers. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2005), ACM,

New York.

CHEN, Y., DAS, A., WANG, Q., SIVASUBRAMANIAM, A., HARPER, R., AND BLAND, M. 2006. Consolidating

clients on back-end servers with co-location and frequency control. In Poster at the ACM Inter-
national Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2006).
ACM, New York.

CHERKASOVA, L. AND PHAAL, P. 1999. Session based admission control: A mechanism for improving

performance of commercial web sites. In Proceedings of the 7th International Workshop on Quality
of Service. IEEE Computer Society Press, Los Alamitos, CA.

CLARK, C., FRASER, K., HAND, S., HANSEN, J., JUL, E., LIMPACH, C., PRATT, I., AND WARFIELD, A. 2005.

Live migration of virtual machines. In Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI’05).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:42 • B. Urgaonkar et al.

COHEN, I., CHASE, J., GOLDSZMIDT, M., KELLY, T., AND SYMONS, J. 2004. Correlating instrumen-

tation data to system states: A building block for automated diagnosis and control. In Pro-
ceedings of the 6th USENIX Symposium in Operating Systems Design and Implementation
(OSDI 2004).

COOK, W. AND ROHE, A. 1999. Computing minimum-weight perfect matchings. INFORMS J. Com-
put. 138–148.

Corba 2006. Corba documentation. http://www.omg.org/.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1991. Introduction to Algorithms. The MIT Press,

Cambridge, MA.

DAVIS, P. 1994. Airline ties profitability to yield management. SIAM News.

DOYLE, R., CHASE, J., ASAD, O., JIN, W., AND VAHDAT, A. 2003. Model-based resource provisioning

in a web service utility. In Proceedings of the 4th USITS.

DUDA, K. J. AND CHERITON, D. R. 1999. Borrowed-virtual-time (BVT) scheduling: Supporting

latency-sensitive threads in a general-purpose scheduler. In Proceedings of the 17th ACM Sym-
posium on Operating Systems Principles. ACM, New York, 261–276.

EDMONDS, J. 1965. Maximum matching and a polyhedron with 0,1 - Vertices. J. Rese. NBS 69B.

ELNIKETY, S., NAHUM, E., TRACEY, J., AND ZWAENEPOEL, W. 2004. A method for transparent admission

control and request scheduling in e-commerce web sites. In Proceedings of the 13th International
Conference on World Wide Web. 276–286.

FOX, A., GRIBBLE, S., CHAWATHE, Y., BREWER, E., AND GAUTHIER, P. 1997. Cluster-based scalable network

services. In Proceedings of the 16th Symposium on Operating Systems Principles (SOSP’97). ACM,

New York.

FRANKS, R. 1999. Performance Analysis of Distributed Server Systems. Ph.D. dissertation, Car-

leton University.

GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM, M. 1999. Cellular disco: Resource management

using virtual clusters on Shared-memory Multiprocessors. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP’99). ACM, New York, 154–169.

GOVINDAN, S., NATH, A., DAS, A., URGAONKAR, B., AND SIVASUBRAMANIAM, A. 2007. Xen and co.:

Communication-aware CPU scheduling for consolidated xen-based hosting platforms. In Pro-
ceedings of the 3rd International ACM SIGPLAN/SIGOPS Conference on Virtual Execution En-
vironments (VEE). ACM, New York.

GOYAL, P., GUO, X., AND VIN, H. M. 1996a. A hierarchical CPU scheduler for multimedia operating

systems. In Proceedings of the USENIX Symposium on Operating System Design and Implemen-
tation (OSDI’96). 107–122.

GOYAL, P., VIN, H. M., AND CHENG, H. 1996b. Start-time fair queuing: A scheduling algorithm for

integrated services packet switching networks. In Proceedings of ACM SIGCOMM ’96. ACM,

New York.

GridForum02b 2002. Global grid forum: Scheduling and resource management working group.

http://www-unix.mcs.anl.gov/ schopf/ggf-sched/.

GUPTA, A., STAHL, D., AND WHINSTON, A. 1999. The economics of network management. Commun.
ACM 42, 5, 57–63.

HARCHOL-BALTER, M. 2000. Task assignment with unknown duration. In Proceedings of the In-
ternational Conference on Distributed Computing Systems. 214–224.

HORI, A., TEZUKA, H., ISHIKAWA, Y., SODA, N., KONAKA, H., AND MAEDA, M. 1996. Implementation

of gang scheduling on a workstation cluster. In Proceedings of the IPPS’96 Workshop on Job
Scheduling Strategies for Parallel Processing. 27–40.

IYER, R., TEWARI, V., AND KANT, K. 2000. Overload control mechanisms for web servers. In Pro-
ceedings of the Workshop on Performance and QoS of Next Generation Networks.

JAMJOOM, H., REUMANN, J., AND SHIN, K. 2000. QGuard: Protecting internet servers from overload.

Tech. Rep. CSE-TR-427-00, Department of Computer Science, University of Michigan.

JONES, M. B., ROSU, D., AND ROSU, M. 1997. CPU reservations and time constraints: Efficient,

predictable scheduling of independent activities. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP’97). ACM, New York, 198–211.

KAMRA, A., MISRA, V., AND NAHUM, E. 2004. Yaksha: A controller for managing the performance

of 3-tiered websites. In Proceedings of the 12th International Workshop on Quality of Service
(IWQoS). IEEE Computer Society Press, Los Alamitos, CA.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:43

KANODIA, V. AND KNIGHTLY, E. 2000. Multi-class latency-bounded web servers. In Proceedings of
International Workshop on Quality of Service (IWQoS’00). IEEE Computer Society Press, Los

Alamitos, CA.

KELLY, T., COHEN, I., GOLDSZMIDT, M., AND KEETON, K. 2004. Inducing models of black-box storage

arrays. Tech. Rep. HPL-2004, HP Labs.

KNIGHTLY, E. AND SHROFF, N. 1999. Admission control for statistical QoS: Theory and practice.

IEEE Network 13, 2. 20–29.

KOURNEV, S. AND BUCHMANN, A. 2003. Performance modeling and evaluation of large-scale J2EE

applications. In Proceedings of the International Conference of the Computer Measurement
Group.

LEE, L.-W., SCHEUERMANN, P., AND VINGRALEK, R. 2000. File assignment in parallel I/O systems

with minimal variance of service time. IEEE Trans. Comput. 49, 2, 127–140.

LESLIE, I., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P., EVERS, D., FAIRBAIRNS, R., AND HYDEN, E.

1996. The design and implementation of an operating system to support distributed multimedia

applications. IEEE J. Selected Areas in Communication, 14, 7, 1280–1297.

LEVY, R., NAGARAJARAO, J., PACIFICI, G., SPREITZER, M., TANTAWI, A., AND YOUSSEF, A. 2003. Per-

formance management for cluster based web services. In Proceedings of the IFIP/IEEE 8th
International Symposium on Integrated Network Management. IEEE Computer Society Press,

Los Alamitos, CA, Vol. 246. 247–261.

LI, S. AND JAMIN, S. 2000. A measurement-based admission-controlled web server. In Proceed-
ings of the 9th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2000). IEEE Computer Society Press, Los Alamitos, CA.

LIN, C., CHU, H., AND NAHRSTEDT, K. 1998. A soft-real-time scheduling server on the windows NT.

In Proceedings of the 2nd USENIX Windows NT Symposium.

LITZKOW, M., LIVNY, M., AND MUTKA, M. 1988. Condor—A hunter of idle workstations. In Proceed-
ings of the 8th International Conference of Distributed Computing Systems. 104–111.

LIU, T.-K., KUMARAN, S., AND LUO, Z. 2001. Layered queueing models for Enterprise Java Beans

Applications. Tech. rep., IBM. June.

LTT02. The linux toolkit project page. http://www.opensys.com/LTT.

MENASCE, D. 2003. Web Server Software Architectures. IEEE Internet Comput. 7.

MENASCE, D., ALMEIDA, V., AND DOWDY, L. 2004. Performance by Design: Computer Capacity Plan-
ning by Example. Prentice-Hall, Englewood Cliffs, NJ.

MENON, A., COX, A., AND ZWAENEPOEL, W. 2006. Optimizing network virtualization in xen. In Pro-
ceedings of the USENIX Annual Technical Conference (USENIX’06).

MENON, A., SANTOS, J., TURNER, Y., JANAKIRAMAN, G., AND ZWAENEPOEL, W. 2005. Diagnosing perfor-

mance overheads in the xen virtual machine environment. In Proceedings of the International
Conference on Virtual Execution Environments.

NELSON, M., LIM, B.-H., AND HUTCHINS, G. 2005. Fast transparent migration for virtual machines.

In Proceedings of the 2005 USENIX Annual Technical Conference. 391–394

PAPOULIS, A. AND PILLAI, S. 2002. Probability, Random Variables and Stochastic Processes.

McGraw-Hill, Englewood Cliffs, NJ.

pgbench 2002. The pgbench man page, postgresql software distribution.

PRADHAN, P., TEWARI, R., SAHU, S., CHANDRA, A., AND SHENOY, P. 2002. An observation-based ap-

proach towards self-managing web servers. In Proceedings of the 10th International Workshop
on Quality of Service (IWQoS 2002). IEEE Computer Society Press, Los Alamitos, CA.

RANJAN, S., ROLIA, J., FU, H., AND KNIGHTLY, E. 2002. QoS-driven server migration for internet data

centers. In Proceedings of the 10th International Workshop on Quality of Service (IWQoS). IEEE

Computer Society Press, Los Alamitos, CA.

ROLIA, J. AND SEVCIK, K. 1995. The method of layers. IEEE Trans. Softw. Eng. 21, 8, 689–

700.

ROSCOE, T. AND LYLES, B. 2000. Distributing computing without DPEs: Design considerations for

public computing platforms. In Proceedings of the 9th ACM SIGOPS European Workshop. ACM,

New York.

SAITO, Y., BERSHAD, B., AND LEVY, H. 1999. Manageability, availability and performance in por-

cupine: A highly scalable, cluster-based mail service. In Proceedings of the 17th Symposium on
Operating Systems Principles (SOSP’99). ACM, New York.

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

1:44 • B. Urgaonkar et al.

SAPUNTZAKIS, C., CHANDRA, R., PFAFF, B., CHOW, J., LAM, M. S., AND ROSENBLUM, M. 2002. Optimizing

the migration of virtual computers. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation.

Sgi99 1999. React: Irix real-time extensions. http://www.sgi.com/software/react.

SHENDE, S., MALONY, A., CUNY, J., LINDLAN, K., BECKMAN, P., AND KARMESIN, S. 1998. Portable

profiling and tracing for parallel scientific applications using C++. In Proceedings of ACM
SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT). ACM, New York. 134–

145.

SHENOY, P. AND VIN, H. 1998. Cello: A disk scheduling framework for next generation operating

systems. In Proceedings of ACM SIGMETRICS Conference. ACM, New York. 44–55.

SLOTHOUBER, L. 1996. A model of web server performance. In Proceedings of the 5th International
World Wide Web Conference.

SMITH, B. C., LEIMKUHLER, J. F., AND DARROW, R. M. 1992. Yield management at American Airlines.

Interfaces, 22, 1, 8–31.

SPECWeb99. The Standard Performance Evaluation Corporation (SPEC). http://www.spec.org/.

STEWART, C. AND SHEN, K. 2005. Performance modeling and system management for multi-

component online services. In Proceedings of the 2nd Symposium on Networked Systems Design
and Implementation.

Sun98b 1998. Solaris resource manager 1.0: Controlling system resources effectively.

http://www.sun.com/software/white-papers/wp-srm.

SUNDARAM, V., CHANDRA, A., GOYAL, P., SHENOY, P., SAHNI, J., AND VIN, H. 2000. Application perfor-

mance in the QLinux multimedia operating system. In Proceedings of the 8th ACM Conference
on Multimedia. ACM, New York.

TANG, P. AND TAI, T. 1999. Network traffic characterization using token bucket model. In Proceed-
ings of IEEE Infocom’99. IEEE Computer Society Press, Los Alamitos, CA.

URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., AND TANTAWI, A. 2005a. An analytical model

for multi-tier internet services and its applications. In Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2005). ACM,

New York.

URGAONKAR, B. AND SHENOY, P. 2004a. Cataclysm: Handling extreme overloads in internet ser-

vices. In Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2004). ACM, New York.

URGAONKAR, B. AND SHENOY, P. 2004b. Sharc: Managing CPU and network bandwidth in shared

Clusters. IEEE Transactions on Parallel and Distributed Systems, 15, 1, 2–17.

URGAONKAR, B. SHENOY, P., CHANDRA, A., AND GOYAL, P. 2005b. Dynamic provisioning of multi-tier

internet applications. In Proceedings of the 2nd IEEE International Conference on Autonomic
Computing (ICAC-05). IEEE Computer Society Press, Los Alamitos, CA.

URGAONKAR, B., SHENOY, P., AND ROSCOE, T. 2002. Resource overbooking and application profiling in

shared hosting platforms. In Proceedings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2002).

VERGHESE, B., GUPTA, A., AND ROSENBLUM, M. 1998. Performance isolation: Sharing and isolation

in shared-memory multiprocessors. In Proceedings of ASPLOS-VIII. 181–192.

VERMA, A. AND ANAND, A. 2006. On store placement for response time minimization in parallel

disks. In Proceedings of ICDCS’0, 31.

VERMA, A. AND GHOSAL, S. 2003. On admission control for profit maximization of networked

service providers. In Proceedings of the 12th International World Wide Web Conference
(WWW2003).

VILLELA, D., PRADHAN, P., AND RUBENSTEIN, D. 2004. Provisioning servers in the application tier

for e-commerce systems. In Proceedings of the 12th International Workshop on Quality of Service
(IWQoS). IEEE Computer Society Press, Los Alamitos, CA.

VIN, H. M., GOYAL, P., GOYAL, A., AND GOYAL, A. 1994. A statistical admission control algorithm for

multimedia servers. In Proceedings of the ACM Multimedia’94. ACM, New York, 33–40.

VOIGT, T., TEWARI, R., FREIMUTH, D., AND MEHRA, A. 2001. Kernel mechanisms for service differ-

rentiation in overloaded web servers. In Proceedings of USENIX Annual Technical Conference.

WALDSPURGER, C. 2002. Memory resource management in VMWare ESX server. In Proceedings
of the 5th Symposium on Operating System Design and Implementation (OSDI’02).

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

Resource Overbooking and Application Profiling • 1:45

WALDSPURGER, C. A. AND WEIHL, W. E. 1994. Lottery scheduling: Flexible proportional-share re-

source management. In Proceedings of the USENIX Symposium on Operating System Design
and Implementation (OSDI’94).

WELSH, M. AND CULLER, D. 2003. Adaptive overload control for busy internet servers. In Proceed-
ings of the 4th USENIX Conference on Internet Technologies and Systems (USITS’03).

WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. 2002. Scale and performance in the denali isolation

kernel. In Proceedings of the 5th Symposium on Operating System Design and Implementation
(OSDI’02).

WOODSIDE, C. AND RAGHUNATH, G. 1995. General bypass architecture for high-performance dis-

tributed algorithms. In Proceedings of the 6th IFIP Conference on Performance of Computer Net-
works.

WSLA. Web service level agreements (wsla) project. http://www.research.ibm.com/wsla.

XU, J., OUFIMTSEV, A., WOODSIDE, M., AND MURPHY, L. 2006. Performance modeling and predic-

tion of enterprise JavaBeans with layered queuing network templates. SIGSOFT Softw. Eng.
Notes 31, 2.

XU, W., BODIK, P., AND PATTERSON, D. 2004. A flexible architecture for statistical learning and

data mining from system log streams. In Proceedings of Workshop on Temporal Data Mining:
Algorithms, Theory and Applications at the 4th IEEE International Conference on Data Mining
(ICDM’04).

ZHANG, J., SIVASUBRAMANIAM, A., RISKA, A., WANG, Q., AND RIEDEL, E. 2005a. An interposed 2-level

I/O scheduling framework for performance virtualization. In Proceedings of the ACM Interna-
tional Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2005).
ACM, New York.

ZHANG, J., SIVASUBRAMANIAM, A., WANG, Q., RISKA, A., AND RIEDEL, E. 2005b. Storage performance

virtualization via throughput and latency control. In Proceedings of MASCOTS.

Received October 2006; revised May 2007; accepted January 2008

ACM Transactions on Internet Technology, Vol. 9, No. 1, Article 1, Publication date: February 2009.

